View : 38 Download: 0

Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: An effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation

Title
Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: An effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation
Authors
Gunjakar J.L.Kim I.Y.Lee J.M.Lee N.-S.Hwang S.-J.
Ewha Authors
황성주Gunjakar Jayavant Laxman
SCOPUS Author ID
황성주scopus; Gunjakar Jayavant Laxmanscopus
Issue Date
2013
Journal Title
Energy and Environmental Science
ISSN
1754-5692JCR Link
Citation
vol. 6, no. 3, pp. 1008 - 1017
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Highly efficient photocatalysts for visible light-induced O2 generation are synthesized via an electrostatically derived self-assembly of Zn-Cr-LDH 2D nanoplates with graphene 2D nanosheets. In the obtained nanohybrids, the positively charged Zn-Cr-LDH nanoplates are immobilized on the surface of negatively charged graphene nanosheets with the formation of a highly porous stacked structure. A strong electronic coupling of the subnanometer-thick Zn-Cr-LDH nanoplates with reduced graphene oxide (RGO)/graphene oxide (GO) nanosheets gives rise not only to the prominent increase of visible light absorption but also to a remarkable depression of the photoluminescence signal. The self-assembled Zn-Cr-LDH-RGO nanohybrids display an unusually high photocatalytic activity for visible light-induced O 2 generation with a rate of ∼1.20 mmol h-1 g -1, which is far superior to that of the pristine Zn-Cr-LDH material (∼0.67 mmol h-1 g-1). The fact that pristine Zn-Cr-LDH is one of the most effective visible light photocatalysts for O2 production with unusually high quantum efficiency of 61% at λ = 410 nm highlights the excellent functionality of the Zn-Cr-LDH-RGO nanohybrids as visible light active photocatalysts. The Zn-Cr-LDH-RGO nanohybrid shows a higher photocatalytic activity than the Zn-Cr-LDH-GO nanohybrid, providing strong evidence for the superior advantage of the hybridization with RGO. The present findings clearly demonstrate that graphene nanosheets can be used as an effective platform for improving the photocatalytic activity of 2D nanostructured inorganic solids. © 2013 The Royal Society of Chemistry.
DOI
10.1039/c3ee23989f
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE