View : 36 Download: 0

Online learning in BitTorrent systems

Title
Online learning in BitTorrent systems
Authors
Izhak-Ratzin R.Park H.Schaar M.V.D.
Ewha Authors
박형곤
SCOPUS Author ID
박형곤scopus
Issue Date
2012
Journal Title
IEEE Transactions on Parallel and Distributed Systems
ISSN
1045-9219JCR Link
Citation
vol. 23, no. 12, pp. 2280 - 2288
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
We propose a BitTorrent-like protocol based on an online learning (reinforcement learning) mechanism, which can replace the peer selection mechanisms in the regular BitTorrent protocol. We model the peers' interactions in the BitTorrent-like network as a repeated stochastic game, where the strategic behaviors of the peers are explicitly considered. A peer that applies the reinforcement learning (RL)-based mechanism uses the observations on the associated peers' statistical reciprocal behaviors to determine its best responses and estimate the corresponding impact on its expected utility. The policy determines the peer's resource reciprocations such that the peer can maximize its long-term performance. We have implemented the proposed mechanism and incorporated it into an existing BitTorrent client. Our experiments performed on a controlled Planetlab testbed confirm that the proposed protocol 1) promotes fairness and provides incentives to contributed resources, i.e., high capacity peers improve their download completion time by up to 33 percent, 2) improves the system stability and robustness, i.e., reduces the peer selection fluctuations by 57 percent, and (3) discourages free-riding, i.e., peers reduce their uploads to free-riders by 64 percent as compared to the regular BitTorrent protocol. © 1990-2012 IEEE.
DOI
10.1109/TPDS.2012.90
Appears in Collections:
엘텍공과대학 > 전자공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE