View : 522 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author남원우*
dc.contributor.authorShunichi Fukuzumi*
dc.contributor.author이용민*
dc.date.accessioned2016-08-28T12:08:02Z-
dc.date.available2016-08-28T12:08:02Z-
dc.date.issued2012*
dc.identifier.issn0002-7863*
dc.identifier.otherOAK-8547*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/222435-
dc.description.abstractSulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe IV(O)] 2+ (N4Py = N,N-bis(2-pyridylmethyl)-N- bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO 4). The observed second-order rate constant (k obs) of sulfoxidation of thioaniosoles by [(N4Py)Fe IV(O)] 2+ increases linearly with increasing concentration of HClO 4 (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe IV(O)] 2+, the observed second-order rate constant (k et) of electron transfer from one-electron reductants such as [Fe II(Me 2bpy) 3] 2+ (Me 2bpy = 4,4-dimehtyl-2,2′-bipyridine) to [(N4Py)Fe IV(O)] 2+ increases with increasing concentration of HClO 4, exhibiting second-order dependence on HClO 4 concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe II(Me 2bpy) 3] 2+ to [(N4Py)Fe IV(O)] 2+ to yield [Fe III(Me 2bpy) 3] 3+ and [(N4Py)Fe III(OH 2)] 3+. The one-electron reduction potential (E red) of [(N4Py)Fe IV(O)] 2+ in the presence of 10 mM HClO 4 (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E red vs log[HClO 4] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe IV(O)] 2+. The PCET driving force dependence of log k et is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k obs values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe IV(O)] 2+ with the k et values of PCET from one-electron reductants to [(N4Py)Fe IV(O)] 2+ at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe IV(O)] 2+ to thioanisoles rather than outer-sphere PCET. © 2012 American Chemical Society.*
dc.languageEnglish*
dc.titleProton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(IV)-oxo complex*
dc.typeArticle*
dc.relation.issue8*
dc.relation.volume134*
dc.relation.indexSCI*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.startpage3903*
dc.relation.lastpage3911*
dc.relation.journaltitleJournal of the American Chemical Society*
dc.identifier.doi10.1021/ja211641s*
dc.identifier.wosidWOS:000301161600045*
dc.identifier.scopusid2-s2.0-84863251368*
dc.author.googlePark J.*
dc.author.googleMorimoto Y.*
dc.author.googleLee Y.-M.*
dc.author.googleNam W.*
dc.author.googleFukuzumi S.*
dc.contributor.scopusid남원우(7006569723)*
dc.contributor.scopusidShunichi Fukuzumi(35430038100;58409757400)*
dc.contributor.scopusid이용민(36546331100;35233855500;57192113229)*
dc.date.modifydate20240426135715*
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE