View : 550 Download: 0

Structural isomerism of an anionic nanoporous In-MOF with interpenetrated diamond-like topology

Title
Structural isomerism of an anionic nanoporous In-MOF with interpenetrated diamond-like topology
Authors
Gu J.-M.Kim S.-J.Kim Y.Huh S.
Ewha Authors
김성진김영미
SCOPUS Author ID
김성진scopus; 김영미scopus
Issue Date
2012
Journal Title
CrystEngComm
ISSN
1466-8033JCR Link
Citation
CrystEngComm vol. 14, no. 5, pp. 1819 - 1824
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Topologically interesting new In-MOFs were prepared by using a 4,4'-biphenyldicarboxylate bridging ligand and In(NO 3) 3·xH 2O. Two isomeric forms of In-MOFs were independently prepared and characterized by X-ray crystallography, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), elemental analysis, and gas sorption analysis. By simply using different solvents, N,N-dimethylformamide or N,N-diethylformamide, we obtained two new In-MOFs. Despite the same coordination mode of an In III node, these two anionic MOFs adopted distinct crystal structures. One isomer (1) showed an overall 4-fold interpenetrated uninodal 4-connected diamond network with Z t = 1 and Z n = 2 (class IIa). The other (2) showed a 4-fold interpenetrated uninodal 4-connected diamond network with Z t = 2 and Z n = 2 (class IIIa). Thus, despite the same metal-ligand connectivity, 1 and 2 are unusual isomeric MOFs based on the ways of catenation. This may be accounted for by the flexible bonding nature of the In-centered pseudotetrahedral motif in the presence of counter-cations with different dimensions. The In-MOFs 1 and 2 exhibited different counter ion distributions and porosity properties. Interestingly, the In-MOF 1 showed a reversible framework transformation from crystalline form → amorphized form (after activation) → crystalline state (after resolvation). This reversible transformation can also be explained by the flexible bonding nature of the In III ion with four η 2-coordinated 4,4'-BPDC ligands. © 2012 The Royal Society of Chemistry.
DOI
10.1039/c2ce06538j
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE