View : 19 Download: 0

Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives

Title
Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives
Authors
Yun J.-Y.Lee J.-E.Yang K.-M.Cho S.Kim A.Kwon Y.-E.Park J.-B.
Ewha Authors
박진병권용억
SCOPUS Author ID
박진병scopus; 권용억scopus
Issue Date
2012
Journal Title
Bioprocess and Biosystems Engineering
ISSN
1615-7591JCR Link
Citation
vol. 35, no. 41276, pp. 211 - 216
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
The effects of structural modification of cell wall on the biotransformation capability by recombinant Corynebacterium glutamicum cells, expressing the chnB gene encoding cyclohexanone monooxygenase of Acinetobacter calcoaceticus NCIMB 9871, were investigated. Baeyer-Villiger oxygenation of 2-(20-acetoxyethyl) cyclohexanone (MW 170 Da) into R-7-(20-acetoxyethyl)-2- oxepanone was used as a model reaction. The whole-cell biotransformation followed Michaelis-Menten kinetics. The Vmax and KS values were estimated as 96.8 U g-1 of dry cells and 0.98 mM, respectively. The Vmax was comparable with that of cyclohexanone oxygenation, whereas the KS was almost eightfold higher. The KS value of 2-(20-acetoxyethyl) cyclohexanone oxygenation was reduced by ca. 30% via altering the cell envelop structure of C. glutamicum with ethambutol, which inhibits arabinosyl transferases involved in the biosynthesis of cell wall arabinogalactan and mycolate layers. The higher wholecell biotransformation rate was also observed in the oxygenation of ethyl 2-cyclohexanone acetate upon ethambutol treatment of the recombinant C. glutamicum. Therefore, it was assumed that the biotransformation efficiency of C. glutamicum-based biocatalysts, with respect to medium- to large-sized lipophilic organic substrates (MW[ca. 170), can be enhanced by engineering their cell wall outer layers, which are known to function as a formidable barrier to lipophilic molecules. © Springer-Verlag 2011.
DOI
10.1007/s00449-011-0594-z
Appears in Collections:
엘텍공과대학 > 식품공학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE