View : 66 Download: 0

Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability

Title
Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability
Authors
Gunjakar J.L.Kim T.W.Kim H.N.Kim I.Y.Hwang S.-J.
Ewha Authors
황성주Gunjakar Jayavant Laxman
SCOPUS Author ID
황성주scopus; Gunjakar Jayavant Laxmanscopus
Issue Date
2011
Journal Title
Journal of the American Chemical Society
ISSN
0002-7863JCR Link
Citation
vol. 133, no. 38, pp. 14998 - 15007
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O 2 generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O 2 generation with a rate of ∼1.18 mmol h -1 g -1, which is higher than the O 2 production rate (∼0.67 mmol h -1 g -1) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O 2 production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical stability. © 2011 American Chemical Society.
DOI
10.1021/ja203388r
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE