View : 18 Download: 4

Novel oxidative modifications in redox-active cysteine residues

Title
Novel oxidative modifications in redox-active cysteine residues
Authors
Jeong J.Jung Y.Na S.Lee E.Kim M.-S.Choi S.Shin D.-H.Paek E.Lee H.-Y.Lee K.-J.
Ewha Authors
이공주최선신동해
SCOPUS Author ID
이공주scopus; 최선scopus; 신동해scopus
Issue Date
2011
Journal Title
Molecular and Cellular Proteomics
ISSN
1535-9476JCR Link
Citation
vol. 10, no. 3
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Redox-active cysteine, a highly reactive sulfhydryl, is one of the major targets of ROS. Formation of disulfide bonds and other oxidative derivatives of cysteine including sulfenic, sulfinic, and sulfonic acids, regulates the biological function of various proteins. We identified novel low-abundant cysteine modifications in cellular GAPDH purified on 2-dimensional gel electrophoresis (2D-PAGE) by employing selectively excluded mass screening analysis for nano ultraperformance liquid chromatography-electrospray- quadrupole-time of flight tandem mass spectrometry, in conjunction with MOD i and MODmap algorithm. We observed unexpected mass shifts (Δm = -16, -34, +64, +87, and +103 Da) at redox-active cysteine residue in cellular GAPDH purified on 2D-PAGE, in oxidized NDP kinase A, peroxiredoxin 6, and in various mitochondrial proteins. Mass differences of -16, -34, and +64 Da are presumed to reflect the conversion of cysteine to serine, dehydroalanine (DHA), and Cys-SO2-SH respectively. To determine the plausible pathways to the formation of these products, we prepared model compounds and examined the hydrolysis and hydration of thiosulfonate (Cys-S-SO2-Cys) either to DHA (Δm = -34 Da) or serine along with Cys-SO2-SH (Δm = -64 Da). We also detected acrylamide adducts of sulfenic and sulfinic acids (+87 and +103 Da). These findings suggest that oxidations take place at redox-active cysteine residues in cellular proteins, with the formation of thiosulfonate, Cys-SO2-SH, and DHA, and conversion of cysteine to serine, in addition to sulfenic, sulfinic and sulfonic acids of reactive cysteine. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
DOI
10.1074/mcp.M110.000513
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
001.pdf(3.38 MB)Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE