View : 14 Download: 4

Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin

Title
Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin
Authors
Fukuda M.Takahashi S.Haramoto Y.Onuma Y.Yeon-Jin K.Yeo C.-Y.Ishiura S.Asashima M.
Ewha Authors
여창열
SCOPUS Author ID
여창열scopus
Issue Date
2010
Journal Title
International Journal of Developmental Biology
ISSN
0214-6282JCR Link
Citation
vol. 54, no. 1, pp. 81 - 92
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
The T-box gene VegT plays a crucial role during mesendoderm specification of the amphibian embryo. While the function of maternal VegT (mVegT) has been extensively investigated, little is known about the function and transcriptional regulation of zygotic VegT (zVegT). In the present study, we used comparative genomics and a knockdown experiment to demonstrate that zVegT is the orthologous gene of zebrafish Spadetail/Tbx16 and chick Tbx6L/Tbx6, and has an essential role in paraxial mesodermal formation. zVegT knockdown embryos show several defects in the patterning of trunk mesoderm, such as abnormal segmentation of somites, a reduction in muscle, and the formation of an abnormal mass of cells at the tail tip. We also identified the cis-regulatory elements of zVegT that are necessary and sufficient for mesodermspecific expression. These cis-regulatory elements are located in two separate upstream regions of zVegT, corresponding to the first intron of mVegT. The results of in vitro binding and functional assays indicate that Forkhead box H1 (FoxH1) and Eomesodermin (Eomes) are the trans-acting factors required for zVegT expression. Our results highlight the essential role of zVegT in organization of paraxial mesoderm, and reveal that zVegT is regulated by a coherent feedforward loop of Nodal signaling via Eomes. © 2009 UBC Press.
DOI
10.1387/ijdb.082837mf
Appears in Collections:
자연과학대학 > 생명과학전공 > Journal papers
Files in This Item:
Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin.pdf(6.8 MB)Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE