View : 12 Download: 0

Mechanistic insights into hydride-transfer and electron-transfer reactions by a manganese(IV)-oxo porphyrin complex

Title
Mechanistic insights into hydride-transfer and electron-transfer reactions by a manganese(IV)-oxo porphyrin complex
Authors
Fukuzumi S.Fujioka N.Kotani H.Ohkubo K.Lee Y.-M.Nam W.
Ewha Authors
남원우Shunichi Fukuzumi이용민
SCOPUS Author ID
남원우scopus; Shunichi Fukuzumiscopus; 이용민scopusscopus
Issue Date
2009
Journal Title
Journal of the American Chemical Society
ISSN
0002-7863JCR Link
Citation
vol. 131, no. 47, pp. 17127 - 17134
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Hydride transfer from dihydronicotinamide adenine dinucleotide (NADH) analogs to a manganese(IV)-oxo porphyrin complex, (TMP)MnIV(O) [TMP = 5,10,15,20-tetrakis(2,4,6-trimethylphenyl) porphyrin], occurs via disproportionation of (TMP)MnIV(O) to [(TMP)MnIII] + and [(TMP)MnV(O)]+ that acts as the actual hydride acceptor. In contrast, electron transfer from ferrocene derivatives to (TMP)MnIV(O) occurs directly to afford ferricenium ions and (TMP)MnIII(OH) products. The disproportionation rate constant of (TMP)MnIV(O) was determined by the dependence of the observed second-order rate constants on concentrations of NADH analogs to be (8.0 ± 0.6) × 106 M-1 s-1 in acetonitrile at 298 K. The disproportionation rate constant of (TMP)Mn IV(O) in hydride-transfer reactions increases linearly with increasing acid concentration, whereas the rate constant of electron transfer from ferrocene to (TMP)MnIV(O) remains constant irrespective of the acid concentration. The rate constants of electron transfer from a series of ferrocene derivatives to (TMP)MnIV(O) were evaluated in light of the Marcus theory of electron transfer to determine the reorganization energy of electron transfer by the (TMP)MnIV(O) complex. © 2009 American Chemical Society.
DOI
10.1021/ja9045235
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE