View : 79 Download: 0

Electrochemical Characterization of Ru/V Mixed Metal Oxide Nanowires and Ru/Re Mixed Metal Oxide Nanofibers

Title
Electrochemical Characterization of Ru/V Mixed Metal Oxide Nanowires and Ru/Re Mixed Metal Oxide Nanofibers
Authors
최현아
Issue Date
2015
Department/Major
대학원 화학·나노과학과
Publisher
이화여자대학교 대학원
Degree
Master
Advisors
이종목
Abstract
이 논문은 나노 구조 금속산화물의 전기화학적 특성에 관한 연구로서 두 가지 연구 주제를 다루고 있다. 첫 번째 장에서는, 단결정 Ru-V 혼합 금속 산화물을 합성하고, 이를 산소 환원 반응 (ORR)과 생체 분자 센서에 적용 하였다. 두 번째 장에서는, 전기 방사 기법을 통해 ReO3을 포함하는 RuO2 나노 섬유의 합성을 연구하고, 그것의 전기화학적 충전용량과 생체센서응용 실험을 보고하였다. 제 1장에서는 간단한 기상 수송 기법 (vapor phase transport process)을 통해 고 결정성 Ru_(1-x)V_(x)O_(2) 혼합 금속 산화물 나노 와이어를 합성하였다. 순환전압-전류법 (cyclic voltammetry, CV)과 전기화학적 임피던스 분광법 (electrochemical impedance spectroscopy, EIS) 등 일련의 전기화학 실험을 통하여 Ru_(0.34)V_(0.66)O_(2)–Au 마이크로 전극이, 음전하 및 양전하의 전극활성물질([Fe(CN)_(6)]^(3-/4-), Ru(NH_(3))_(6)^(3+/2+))에 대하여 모두 빠른 전자전달속도를 가짐을 확인했다. 또한, Ru_(0.34)V_(0.66)O_(2)–Au 마이크로 전극은 연료전지에서 산소환원반응 (oxygen reduction reaction, ORR) 촉매로서의 가능성을 보였고 생체 내 pH (7.40)에서 다른 전극들 중 가장 우수한 감도 (160 nA mM^(−1))로 과산화수소를 선택적으로 환원시키는 결과를 확인했다. 제 2장에서는 RuO_(2)-ReO_(3) 혼합 나노 섬유를 전기방사법과 열처리를 통해 합성하였으며, RuO_(2)-ReO_(3) 나노 섬유의 충전용량 특성과 센서로의 활성을 전기화학적으로 규명하였다. 그 결과, 레늄을 11% 포함하는 전극인 RuO_(2)-ReO_(3)(0.11)/GC이 레늄을 포함하지 않는 순수한 RuO_(2)/GC 전극보다 비 충전용량 (specific capacitance)이 205 F g^(-1)로 20.9배 크고, 과산화수소 환원 감도가 668 μA mM^(-1)cm^(-2) (GC 원반 전극의 기하학적 면적으로 보정, d = 3 mm)로 7.6배 크다는 결과를 얻었다.;This thesis is composed of two parts of studies on the electrochemical properties of metal oxide nanostructures. In the first part, single crystalline Ru-V mixed metal oxide was synthesized and applied for oxygen reduction reaction (ORR) catalyst and sensing biomolecules. In the second part, the synthesis of ReO_(3) embedded into electrospun RuO_(2) nanofibers was studied and its electrochemical capacitance and bioapplication were reported. In chapter 1, highly crystalline Ru_(1-x)V_(x)O_(2) mixed metal oxide nanowires were simply synthesized via a vapor phase transport process. A series of electrochemical experiments such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques proved that the Ru_(0.34)V_(0.66)O_(2)–Au microelectrode have the fast electron-transfer for the both negative and positive electroactive species couples ([Fe(CN)_(6)]^(3-/4-), Ru(NH_(3))_(6)^(3+/2+)). Moreover, the Ru_(0.34)V_(0.66)O_(2)–Au microelectrode was revealed as a promising oxygen reduction reaction (ORR) catalyst in fuel cell. Also, Ru_(0.34)V_(0.66)O_(2)–Au microelectrode showed the highest H_(2)O_(2) reduction sensitivity of 160 nA mM^(−1) (r = 0.998) and the detection limit of 22 µM in neutral pH (7.40) (Appl. Mater. Interfaces, 2013, 5, 8401). In chapter 2, the RuO_(2)-ReO_(3) composite nanofibers were synthesized through electrospinning and thermal annealing process. The electrochemical experiments were carried out to show the capacitive behavior and sensing performance of RuO_(2)-ReO_(3) nanofibers. As a results, the RuO_(2)-ReO_(3)(0.11, relative Re atomic percent to the sum of Re and Ru)/GC electrode demonstrates the 20.9-fold higher specific capacitance value of 205 F g^(-1) with a capacity loss of 19% from v = 10 to 2000 mV s^(-1) and 7.6-fold higher H_(2)O_(2) reduction sensitivity of 668 μA mM^(-1)cm^(-2) (normalized by GC disk area, d = 3 mm), respectively, than pure RuO_(2)/GC electrode.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE