View : 25 Download: 0

Small n - large p Canonical Correlation Analysis

Title
Small n - large p Canonical Correlation Analysis
Authors
강혜인
Issue Date
2014
Department/Major
대학원 통계학과
Publisher
이화여자대학교 대학원
Degree
Master
Advisors
유재근
Abstract
This paper aims to conduct Canonical correlation analysis (CCA) when n does not dominate p. As high-dimensional data sets have increased, demands for dimension reduction and variable selection gets more popularity. Sufficient Dimension Reduction (SDR) has been studied in order to satisfy these demands. One weakness of classical SDR is that it requires the inversion matrix of cov(X) which does not available when p is bigger than n. In this paper, we introduce one way of conducting SDR without the calculation of the inversion matrix of cov(X) and we apply this method to CCA.;본 연구는 sample size n이 p보다 작을 때 Canonical Correlation Analysis (CCA)를 수행하는 방법에 대한 것이다. 최근 고차원의 데이터가 증가함에 따라 차원축소 (dimension reduction)에 대한 연구가 더 활발하게 진행되고 있으며, 따라서 충분차원축소 (Sufficient Dimension Reduction, SDR)는 이러한 수요를 만족시키기 위해 계속적인 연구가 진행되어 왔다. 일반적으로 SDR은 covariance matrix의 역행렬을 필요로 하지만 n이 p보다 작으면 covariance matrix의 역행렬을 구할 수 없으므로 기존 SDR을 적용할 수가 없다. 본 연구에서는 covariance matrix의 역행렬을 구할 수 없는 n
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 통계학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE