View : 826 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor최진호-
dc.contributor.authorNGUYEN, THU HANG-
dc.creatorNGUYEN, THU HANG-
dc.date.accessioned2016-08-26T04:08:56Z-
dc.date.available2016-08-26T04:08:56Z-
dc.date.issued2014-
dc.identifier.otherOAK-000000084759-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/210800-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000084759-
dc.description.abstractIn order to improve the thermal stability and mechanical strength of poly(ethylene vinyl acetate) (EVA) and polypropylene (PP), we prepared various nanocomposites of EVA and PP with organoclay depending on the kind of organic modifier, and the content of organoclay and the kind of host clay by solution blending method. However, intact clays are not compatible with the hydrophobic polymer matrix due to their hydrophilic surface property. Therefore we modified the surface of clays such as Kunipia F, fluorine mica (ME), and laponite (Lap) tobe hydrophobic by intercalating the long chain alkylammonium surfactant such as dimethyldistearyl ammonium (DMDSA) and cetyltrimethylammonium (CTA) with different structure, which were confirmed the expansion of basal spacing from the x-ray diffraction analysis. Organoclay/EVA nanocomposites were synthesized by mixing the organoclays dispersed in toluene with EVA dissolved in toluene and evaporating the solvent. According to x-ray diffraction (XRD) analysis, the sharp peaks corresponding to the organoclay were diminished in organoclay/EVA nanocomposites, indicating that organoclays were predominantly exfoliated in EVA matrix. The well-dispersed state of organoclay in EVA matrix was also confirmed with the transmission electron microscopic analysis.Thermogravimetricanalysis (TGA) show that CTA-clay/EVAnanocomposites have better thermal stability than DMDSA-clays/EVA. In case of CTA-ME/EVA, the decomposition temperature of EVA was improved by 29 K (12 % CTA-ME/EVA) compared to pure EVA. But the thermal stability of CTA-Lap/EVA was not improved. The mechanical properties such as elastic modulus and tensile strength of EVA were also improved after inserting CTA-KF and CTA-ME that it can be seen a significant increase with the increase various clay loadings, indicating a good interaction between organoclays with EVA chains. Organoclay/PP nanocomposites were also successfully synthesized by mixing organoclays dispersed in xylene with PP dissolved in xylene and precipitating the nanocomposites with ethanol. According to the XRD analysis, sharp peaks corresponding to CTA-clays disappeared in PP nanocomposites containing 3 wt% CTA-clay, indicating that CTA-clays were uniformly dispersed in PP matrix. However, PP nanocomposites with more than 6 wt% CTA-clays retained the several small peaks ascribed to CTA-clays, which means that some organoclays agglomerated in the PP matrix.According to the thermogravimetric analysis, CTA-clay/PP nanocompositesshowed the better thermal stability than DMDSA-clay/PPnanocomposites. The thermal stability of PP could increase by 42 K in 9 wt% CTA-ME/PP nanocomposite. But the CTA-Lap/PP nanocomposite don’t show the improved thermal stability.The mechanical property such as elastic modulus and tensile strength of PP were also improved depending on the content of organoclay in PP matrix, indicating that the layers of organoclaywere well dispersed in PP matrix with good compatibility. ;열안정성과 기계적강도가 향상된 유기화점토/EVA 나노복합체와 유기화점토/PP 나노복합체를 용액혼합 방법으로 유기화물질의종류, 유기화점토의 함량, 점토의종류를 변화시켜서 합성하였다. 점토층의 표면은 친수특성을 갖고 있기 때문에 그자체로는 소수성을 지닌 고분자와 혼합이잘되지 않는다. 따라서, dimethyldistearyl ammonium (DMDSA)과 cetyltrimethylammonium (CTA)과 같은 긴사슬을 지닌알킬암모늄 계면활성제를 Kunipia-F, fluorine mica (ME), laponite (Lap) 와 같은 점토에 층간삽입시킴으로써 점토층의 특성을 소수성으로 변화시킬 수 있었고, X-선 회절분석으로 층간거리의 증가로부터 층간삽입됐음을 확인할 수 있었다. 유기화점토/EVA 나노복합체는 톨루엔에 분산된 유기화점토와 EVA 용액을 혼합하고, 톨루엔을 제거함으로써 성공적으로 합성할 수 있었다. X-선 회절분석에 따르면 유기화점토/EVA 나노복합체에서는 유기화점토에 해당하는 피크들이 없어졌는데, 이는 유기화점토가 대부분 박리화된 상태로 EVA 매트릭스에 잘 분산되어 있다는 것으로볼 수 있고, 이는 투과전자현미경 분석으로 재확인할 수 있었다. 열분석으로부터 CTA-점토/EVA 나노복합체는 DMDSA-점토/EVA 나노복합체보다 열안정성이 우수함을 알수있었다. 12wt% CTA-ME/EVA 나노복합체의 경우, 열분해온도가 EVA 자체에 비해 29 K 정도 향상되었다. 그러나 CTA-Lap/EVA는 열안정성이 향상되지 않았다. E-modulus 와 tensile strength와 같은 기계적강도는 CTA-KF, CTA-ME 와 EVA의 나노복합체에서 유기화점토의 함량을 증가시킬수록 증가하는것을 확인할 수 있었는데, 이는 EVA 와유기화점토가 잘 혼성화되어 있다는 것을 의미한다. 유기화점토/PP 나노복합체는 자일렌에 분산된 유기화점토를 PP 용액과 혼합하고, 에탄올로 침전시키고, 건조함으로써 성공적으로 합성할 수 있었다. X-선 회절분석결과 3 wt% CTA-점토를 포함하는 PP 나노복합체에서는 CTA-점토에해당하는 X-선 회절피크가 없어졌는데, 이는 PP 매트릭스에 CTA-점토가 균일하게 분산되어 있다는 것을 의미한다. 그러나, 6wt% 이상 CTA-점토를 함유하는 PP 나노복합체에서는 CTA-점토에 해당하는 회절피크가 약하게 확인되었는데, 이는일부의 CTA-점토가 응집된상태로 PP 매트릭스 안에 분산되어 있다는 것을 의미한다. 열분석결과, CTA-점토/PP 나노복합체는 DMDSA-점토/PP 나노복합체에 비해 열안정성이 우수하였다. 9 wt% CTA-ME/PP는 PP 자체에 비해 열안정성이 42 K 정도 향상되었다. 그러나, CTA-Lap/PP 나노복합체는 열안정성이 향상되지 않았다. 유기화점토/PP 나노복합체는 유기화점토의 함량에따라 e-modulus, tensile strength와 같은 기계적 물성이 향상되었는데, 이는 유기화점토층이 PP 고분자 매트릭스에 적절한 상호작용을 하면서 잘분산되어 있다는 것을 의미한다.-
dc.description.tableofcontentsCHAPTER I. Thermal stability and Mechanical Properties of Organoclay-EVA Nanocomposites depending on Host clays and Organic Modifiers 1 1.1. Introduction 2 1.2. Experimental Section 4 1.2.1. Materials 4 1.2.2. Preparation of Organoclays 5 1.2.3. Preparation of Organoclay/EVA nanocomposites 5 1.2.4. Characterizations 5 1.3. Results and discussion 6 1.3.1. Characterization of organo-clays 6 1.3.1.1. X-ray diffraction pattern of organo-clays 6 1.3.1.2. Infrared Spectroscopy Analysis 7 1.3.1.3. SEM images 7 1.3.1.4. Thermogravimetric of organoclays 8 1.3.2. Organo-clay/EVA Nanocomposites 9 1.3.2.1. XRD of Organoclays/EVA Nanocomposites 9 1.3.2.2. Tranmission Electron Micrographs of EVA nanocomposites 9 1.3.3. Thermal stability of Organoclay/EVA nanocomposites 10 1.3.4. Mechanical Properties 12 1.4. Conclusion 14 1.5. References 15 CHAPTER II. Organoclay-Polypropylene nanocomposites with Improved Thermal stability and Mechanical Properties 37 2.1. Introduction 38 2.2. Experimental Section 39 2.2.1. Materials 39 2.2.2. Preparation of Organoclays/PP nanocomposites 39 2.2.3. Characterizations 40 2.3. Results of PP nanocomposites 40 2.3.1. Morphology and Structure 40 2.3.1.1. DMDSA-clays/PP 40 2.3.1.2. CTA-clays/PP 41 2.3.2. Thermal stability 42 2.3.2.1. DMDSA-clays/PP 42 2.3.2.2. CTA-clays/PP 43 2.3.3. Mechanical Properties 43 2.3.3.1. CTA-clays/PP 43 2.4. Conclusion 44 2.4.1. Role of kinds of clays 44 2.4.2. Role of Organic modifier 44 2.4.3. Role of Solvent 44 2.4.4. Role of Organoclay content 45 2.5. References 46 국문초록 61-
dc.formatapplication/pdf-
dc.format.extent1833273 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleOrganoclays-Polymer Nanocomposites with Improved Thermal Stability and Mechanical Properties-
dc.typeMaster's Thesis-
dc.format.pagexi, 62 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2014. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE