View : 1205 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor하헌주-
dc.contributor.author강혜지-
dc.creator강혜지-
dc.date.accessioned2016-08-26T04:08:10Z-
dc.date.available2016-08-26T04:08:10Z-
dc.date.issued2013-
dc.identifier.otherOAK-000000077400-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/209877-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000077400-
dc.description.abstractNonalcoholic fatty liver disease (NAFLD) is one of the major health problems worldwide due to obesity epidemic associated with advanced chronic liver disease. Reactive oxygen species (ROS) contribute to the development and progression of NAFLD. Endogenous catalase has been suggested to play an important role in protecting kidney injury under diabetic metabolic stress through maintaining peroxisomal fitness. Considering that the expression of catalase is the most abundant in the liver, it was hypothesized that endogenous catalase would also play a protective role in high fat (HF)-induced liver injury. Catalase knock-out (CKO) and wild-type (WT) C57BL/6J mice were fed a normal diet (ND) (18% of total calories from fat) or a HF diet (HFD) (60% of total calories from fat) for 11 weeks. Plasma ALT was significantly higher in CKOHF mice than in WTHF and CKO mice, suggesting accelerated liver injury in CKOHF mice. Insulin resistance estimated by glucose tolerance test as well as liver JNK, IRS-1 (Ser307), Akt, mTOR, and GSK-3β phosphorylation was exaggerated in CKOHF mice than in WTHF mice. The expression of inflammation markers was also higher in CKOHF mice than WTHF and CKO mice. Plasma free fatty acid (FFA) and liver lipid accumulation were significantly increased in CKOHF mice than in other experimental groups. Catalase deficiency increased liver nitrotyrosine and 8-OHdG expression, markers of oxidative stress. Of note, plasma ALT and FFA, liver lipid accumulation, macrophage infiltration, and hepatic insulin resistance were significantly increased in CKO mice compared to those of WT mice. Consistent with in vivo results, HepG2 cells transfected with catalase siRNA significantly accelerated palmitate-induced insulin resistance, which was effectively blocked by N-acetyl-cysteine (NAC). In summary, increased oxidative stress by catalase deficiency induced hepatic steatosis, insulin resistance, and inflammation in the liver. These results suggest that endogenous catalase may play an important role in maintaining basal liver redox state and insulin signaling as well as HF-induced metabolic stress and protect the liver from the development and progression of NAFLD. ;비 알코올성 지방간질환은 만성 간질환 중에서 가장 흔한 질환 중 하나로 비만, 고혈압, 당뇨병과 같은 대사증후군의 구성요소와 많은 관련성이 있다. 이러한 비 알코올성 지방간질환의 주 원인으로 활성산소종의 증가가 있는데, 최근 연구에서 catalase가 페록시좀 내 산화환경을 유지하여 당뇨병성 신증에 대한 보호작용이 있음을 시사하였다. Catalase가 간에서 가장 많이 발현된다는 점을 고려하여, 본 연구에서는 catalase가 비만으로 인한 간 손상에서도 보호적인 역할을 할 것이라는 가설을 세우고 이에 대해 연구하였다. 첫 번째 실험에서는 catalase 결핍이 고지방 식이로 인한 간 손상에 미치는 영향을 알아보기 위해 야생형(wild type: WT) 생쥐와 catalase 결핍(CKO) 생쥐를 사용하였다. 11주간 고지방식이를 실시한 후, 40주령 CKO 생쥐는 고지방 식이를 한 WT 생쥐에 비하여 혈중 알라닌 아미노전이요소(ALT) 활성, 조직 내 지질 축적, 인슐린 저항성, 혈중 지방산이 증가하였다. 또한 고지방 식이를 한 CKO 생쥐는 면역염색(immunostaining)을 통해 조직 내 염증반응과 산화적 스트레스가 증가했음을 확인하였다. 무엇보다도 고지방식이를 하지 않는 조건에서 catalase 결핍 자체만으로도 WT 생쥐에 비해 CKO 생쥐는 혈중 알라닌 아미노전이요소 활성, 혈중 지방산, 조직 내 지질축적, 염증반응, 신화적 스트레스가 증가하였다. 두 번째 실험에서는 노화 정도에 따라 catalase 결핍에 대한 영향이 다를 수 있으므로 20주령 CKO 생쥐를 사용해 동일한 지표들을 측정하였다. 일반식이와 고지방 식이를 한 20주령 CKO 생쥐는 catalase 결핍에 의한 지질 축적은 관찰되지 않았으나 각 지표에 대해서 첫 번째 결과와 비슷한 양상을 보임을 확인하였다. 세 번째 실험에서는 간암세포 (HepG2 cells)를 이용해 간 자체 내에서 catalase의 영향을 확인하였다. HepG2 세포에서 catalase의 발현을 siRNA로 억제시켰을 때 지방산(palmitic acid)으로 인한 인슐린 저항성이 더 증가하였고, 이러한 영향은 항산화제(N-acetylcystein: NAC)에 의해 억제 되었다. 이와 같은 결과를 바탕으로 catalase가 간 내 산화환경을 유지하여 인슐린 저항성 및 비만으로 인한 대사적 스트레스로부터 간을 보호한다고 생각할 수 있으며 catalase가 비 알코올성 지방간 질환의 효과적인 치료 접근을 가능케 한다고 할 수 있다.-
dc.description.tableofcontentsIntroduction 1 1. Obesity and metabolic disease 1 1.1. Obesity epidemic 1 1.2. Prevalence of nonalcoholic fatty liver disease (NAFLD) 1 2. NAFLD 5 2.1. The disease spectrum of NAFLD 5 2.2. Metabolism of triglyceride (TG) in the liver 5 2.3. Insulin resistance in NAFLD 7 3. Reactive oxygen species (ROS) 9 3.1. Implication of ROS in NAFLD 9 3.2. ROS generating systems 13 3.2.1. NAD(P)H oxidase 13 3.2.2. Mitochondria 14 3.2.3. Cytochrome P450 monoxygenase (CYP2E1) 16 3.2.4. Peroxisomes 16 3.3. ROS scavenging systems 17 3.3.1. Catalase in peroxisomes 17 4. Purpose of the study 21 Materials and methods 22 1. Animals 22 1.1. Part 1: Old mice group 22 1.2. Part 2: Young mice group 22 2. Measurements of blood parameters and enzyme-linked immunosorbent assay (ELISA) 23 3. Western blot 23 4. Reverse transcription and real-time PCR 25 5. Histological analysis 25 5.1. Hematoxylin and eosin (H&E) staining 25 5.2. Immunohistochemistry 26 6. Oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT) 26 7. Cell culture and siRNA reverse transfection 26 8. Preparation of palmitate 27 9. Cell treatments 27 10. Statistical analysis 28 Results 32 Part 1. The effect of catalase deficiency in old mice group 32 1. General characteristics of experimental animals 32 2. Catalase deficiency accelerated liver lipid accumulation 34 3. Hepatic inflammation was accelerated by catalase deficiency 34 4. Catalase deficiency accelerated HF-induced glucose intolerance and insulin insensitivity 36 5. Catalase deficiency accelerated hepatic insulin resistance 36 6. Catalase deficiency affected other antioxidant defense systems in the liver 39 7. Hepatic oxidative stress was exacerbated by catalase deficiency 42 8. Peroxisomal and mitochondrial biogenesis were affected by catalase deficiency 42 9. Peroxisomal and mitochondrial β-oxidation were increased by catalase deficiency 44 Part 2. The effect of catalase deficiency in young mice group 47 1. General characteristics of experimental animals 47 2. Catalase deficiency influenced on HF-induced liver lipid accumulation 47 3. Hepatic inflammation was accelerated by catalase deficiency 49 4. Insulin resistance in catalase deficient young mice 49 5. Peroxisomal and mitochondrial biogenesis were affected by catalase deficiency 52 6. Peroxisomal and mitochondrial β-oxidation were increased by catalase deficiency 52 7. Summary of catalase deficiency in the development and progression of NAFLD 55 Part 3. The effect of catalase deficiency on palmitate-treated HepG2 cells 58 1. The efficiency of reverse transfected catalase siRNA 58 2. Palmitate induced hepatic insulin resistance in HepG2 cells 58 3. Catalase siRNA exacerbated palmitate-induced insulin resistance in HepG2 cells, which was inhibited by antioxidant treatment 58 Discussion 63 References 68 Appendix 76 국문요약 77 감사의 글 79-
dc.formatapplication/pdf-
dc.format.extent10070830 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleThe role of catalase in high fat-induced liver injury-
dc.typeMaster's Thesis-
dc.format.pagexiii, 81 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 바이오융합과학과-
dc.date.awarded2013. 2-
Appears in Collections:
일반대학원 > 바이오융합과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE