View : 366 Download: 0

Improving the Catalytic Activity of Cyclohexanone Monooxygenase-Based Whole-Cell Biocatalysts under Substrate Toxic Conditions

Improving the Catalytic Activity of Cyclohexanone Monooxygenase-Based Whole-Cell Biocatalysts under Substrate Toxic Conditions
Issue Date
대학원 식품공학과
이화여자대학교 대학원
The catalytic activity of oxygenase-based whole-cell biocatalysts is heavily influenced by substrate and product toxicities due to cell membrane permeabilization and protein denaturation effects of the organic substrates and products. Thereby, stability of oxygenase-based whole-cell biocatalysts against solvent stress was investigated with recombinant Escherichia coli BL21 and Corynebacterium glutamicum ATCC13032 expressing the chnB gene of cyclohexanone monooxygenase of Acinetobacter calcoaceticus NCIMB 9871. The cyclohexanone oxygenation activity of the recombinant biocatalysts rapidly decreased as cyclohexanone concentration increased from 2.4 to 26 g l-1. However, treatment of the recombinant cells with non-lethal doses of cyclohexanone or preadaptation to the toxic substrate led to their oxygenation activity being relatively maintained. For instance, the oxygenation activity of cyclohexanone-treated E. coli cells was ca. 13 U per g dry cells at the substrate concentration of 26 g l-1, which was almost 5-folds higher than that of the cyclohexanone-nontreated cells. In addition, biocatalytic activity was also rather maintained when the genes encoding chaperones (i.e., GroEL-ES and DnaKJ-GrpE) were coexpressed with the chnB gene. The positive effects of chaperones on the catalytic activity of the recombinant E. coli-based biocatalyst appeared to relate with expression level of biotransformation enzymes rather than with solvent stress-response metabolism. Overall, it was assumed that molecular chaperones, of which expression can be induced by solvent treatment, were involved in catalytic stability of whole-cell biocatalysts during biotransformations where toxic compounds are involved as the reactants.;산화환원 효소 기반의 전세포 촉매에 이용되는 대부분의 기질과 바이오 산물은 유기물질이며 이들은 세포막의 투과성과 세포 내 단백질 변성에 영향을 미친다. 따라서 독성을 띄는 이들 기질과 바이오 산물은 전세포 촉매의 활성에 영향을 주게 된다. 본 연구에서는 용매 스트레스에 의한 산화환원 효소기반의 전세포 촉매의 안정성을 Acinetobacter calcoaceticus NCIMB 9871유래의 cyclohexanone monooxygenase gene (chnB)이 발현된 재조합 Escherichia coli BL21와 Corynebacterium glutamicum ATCC13032를 이용하여 조사하였다. Cyclohexanone 농도가 2.4에서 26 g L - 1 증가하자 재조합 생촉매의 cyclohexanone 산화 활성이 급격히 감소하였다. 그러나 치사량이 아닌 농도로 cyclohexanone를 주입했을 경우와 독성 기질에 미리 사전적응을 시킨 재조합 세포의 경우 산화활성이 비교적 유지되었다. 예를 들어 기질농도가 26 g L - 1일 경우, cyclohexanone 처리한 E. coli 세포의 산화활성이 13 U/g of dry cells이었으며 이는 cyclohexanone을 처리하지 않은 세포보다 5배 높은 활성수치였다. 또한 chaperones(GroEL - ES와 DnaKJ - GrpE)을 발현하는 유전자를 chnB와 함께 공동발현 시키자 생촉매의 활성이 더욱 유지되었다. 재조합 E. coli 기반 생체 촉매활성에 대한 chaperones의 긍정적 효과는 용매 스트레스에 대항하는 대사흐름변화 보다는 생물전환 효소의 발현량에 더욱 관련 있어 보였다. 전반적으로, 독성 용매에 의해 발현시킬 수 있는 chaperones은 독성 화합물이 반응물질로 관련된 생물전환 반응에서 전세포 생촉매 활성의 안정성에 관여할 것이라 생각된다.
Show the fulltext
Appears in Collections:
일반대학원 > 식품공학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.