View : 660 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author안영희-
dc.creator안영희-
dc.date.accessioned2016-08-26T11:08:00Z-
dc.date.available2016-08-26T11:08:00Z-
dc.date.issued2008-
dc.identifier.otherOAK-000000049827-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/201775-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000049827-
dc.description.abstract다양한 growth factor들과 insulin에 의해 자극받은 세포들은 PI3K를 생성하며 이 효소의 활성은 암 억제자인 PTEN의 활성에 의해 전환된다. 우리는 PTEN의 일부분이 PDGF나 insulin에 의해 자극 받은 다양한 세포들에서 PTEN의 필수 cysteine 잔기의 산화로 인해 비활성이 되는 것을 보여주었다. 이 결과는 PDGF나 insulin에 의한 PI3K의 활성이 PTEN의 반대작용 때문에 PIP3의 축적을 야기하는데 충분하지 못하고 과산화수소에 의해 수반되는 PTEN의 비활성이 신호전달을 야기하기 위해 충분히 PIP3의 농도를 증가시키기는 것이 필요하다고 제안한다. 최근 안정한 동위원소 정량에 기초한 정량분석방법이 복잡한 단백질혼합물의 동시에 자동화된 확인과 정량을 위한 탁월한 전망이 되고 있다. SILAC을 사용한 PTEN과 관련된 단백질을 확인하기 위해 우리는 Leu-d0와 Leu-d3의 샘플에서 얻은 MS/MS 스펙트럼에서 딸 이온의 상대적인 세기를 비교하였다. 우리는 이 방법을 과산화수소가 처리되거나 PTEN이 과발현되는 동안 단백질의 발현에서 상대적인 정량 차이를 보는데 사용하였다. 확인된 단백질 가운데 일부가 이 실험에서 증가 또는 감소되는 것을 발견하였다. 게다가, PTEN은 많은 암에서 비조절되는 다양한 기능의 단백질이지만 PTEN과 관련된 많은 단백질들이 기능적 물리적으로 아직 밝혀지지 않았다. PTEN의 조절에 중요한 PTEN 결합 단백질을 찾기 위해서 우리는 프로테오믹스에 기초한 접근방법을 활용하였다. PTEN이 발현된 NIH3T3 세포의 용해물이 affinity chromatography에 사용되었고 그 다음 LC-ESI-MS/MS에 의해 분석되었다. 전체 93개의 단백질이 확인되었고 그 중에서 우리는 E3 ubiquitin ligase 단백질인 Nedd4에 관심을 갖게 되었다. 그 이후의 검증실험은 HeLa 세포를 사용하여 수행되었다. Nedd4는 PTEN에 의해 야기되는 apoptotic 세포 사멸을 억제하고 반대로 Nedd4 수준은 PTEN에 의해 감소된다. 이러한 감소 효과는 PTEN의 활성부위 변화 (cysteine to serine at 124 amino acid in PTEN)에 의해서 감소된다. Nedd4 발현은 또한 PI3K 억제제인 LY294002에 의해 감소되는데 이것은 Nedd4 발현의 조절이 PTEN-PI3K/Akt 신호전달의 phosphatase-kinase 활성에 영향을 받는다는 것을 제안한다. 정량적 실시간 PCR 분석은 Nedd4가 전사적으로 PTEN에 의해 조절된다는 것을 보여준다. 그러므로 우리의 결과는 기질뿐만 아니라 E3 ubiquitin ligase Nedd4의 negative 피드백 조절자로서 PTEN의 역할에 관해서 중요한 의미를 가지고 있다.;Stimulation of cells with various peptide growth factors and insulin induces the production of PI3K. The action of this enzyme is reversed by that of the tumor suppressor PTEN. We show that a small fraction of PTEN molecules is transiently inactivated as a result of oxidation of the essential cysteine residue of this phosphatase in various cell types stimulated with PDGF or insulin. These results suggest that the activation of PI3K by PDGF or insulin might not be sufficient to induce the accumulation of PIP3 because of the opposing activity of PTEN and that the concomitant local inactivation of PTEN by H2O2 might be needed to increase the concentration of PIP3 sufficiently to trigger downstream signaling events. Recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the stimultaneous and automated identification and quantitation of complex protein mixtures. To identify PTEN related proteins using SILAC, we tried to compare the relative intensities of fragment ions in the MS/MS spectra obtained from Leu-d0 and Leu-d3 samples. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal laucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during H2O2 treatment or PTEN over-expression. Some of identified proteins were up- and down-regulated during these processes. Furthermore, PTEN is a multifunctional protein deregulated in many types of cancer. It is suggested that a number of proteins that relate with PTEN functionally or physically have not yet been found. In order to search for PTEN-interacting proteins that might be crucial in the regulation of PTEN, we exploited a proteomics-based approach. PTEN-expressing NIH 3T3 cell lysates were used in affinity chromatography and then analysed by LC?ESI?MS/MS. A total of 93 proteins were identified. Among the proteins identified, we concentrated on the E3 ubiquitin-protein ligase Nedd4, and performed subsequent validation experiments using HeLa cells. Nedd4 inhibited PTEN-induced apoptotic cell death and, conversely, the Nedd4 level was down-regulated by PTEN. The down-regulation effect was diminished by a mutation (C124S) in the catalytic site of PTEN. Nedd4 expression was also decreased by a PI3K inhibitor, LY294002, suggesting that the regulation is dependent on the phosphatase-kinase activity of the PTEN-PI3K/Akt pathway. Semi-quantitative real-time PCR analysis revealed that Nedd4 was transcriptionally regulated by PTEN. Thus our results have important implications regarding the roles of PTEN upon the E3 ubiquitin ligase Nedd4 as a negative feedback regulator as well as a substrate.-
dc.description.tableofcontentsI. Introduction = 1 I-1. Tumor suppressor PTEN (Phosphatase and tensin homolog deleted on chromosome 10) and redox regulation of PTEN = 1 I-2. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative analysis = 5 I-3. Relationship between PTEN and the E3 ubiquitin-protein ligase Nedd4 = 7 II. Materials and Methods = 13 II-1. Materials = 13 II-1-1. Chemicals and media = 13 II-1-2. Mammalian cell lines and expression vectors = 14 II-2. Methods = 15 II-2-1. Cell culture and transfection = 15 II-2-2. Measurement of PIP3 = 16 II-2-3. Assay of PI 3-kinase Activity = 16 II-2-4. Measurement of PTEN phosphatase activity = 17 II-2-5. Preparation of cell culture media and sample for SILAC = 17 II-2-6. Affinity chromatography = 19 II-2-7. Immunoprecipitation = 19 II-2-8. In gel protein digestion and mass spectrometry for SILAC = 20 II-2-9. In solution protein digestion and MS for identification of proteins = 22 II-2-10. Fluorescence microscopy = 23 II-2-11. Western blot assay = 23 II-2-12. small interfering RNA (siRNA) = 24 II-2-13. RNA extraction and quantitative RT PCR = 24 III. Results = 27 III-1. Reversible oxidation and inactivation of PTEN = 27 III-1-1. Effect of Nox1 overexpression on PDGF-induced PIP3 generation = 27 III-1-2. Effect of Prx II overexpression on EGF-induced PIP3 generation = 29 III-1-3. Growth factor-induced oxidation of PTEN detected by a mobility shift on nonreducing SDS/PAGE = 33 III-1-4. Effect of mutation of PDGF ?? receptor on PDGF-induced oxidation of PTEN = 36 III-1-5. PDGF-induced inactivation of PTEN detected by assay of phosphatase activity = 37 III-1-6. Insulin-mediated activation of PI-3 kinase cascade = 39 III-1-7. Insulin-mediated modification of PTEN and PTEN activity = 44 III-1-8. Effect of DPI and H2O2 on PI-3 kinase activity and Akt phosphorylation = 49 III-2. A simple and accurate approach to expression proteomics by stable isotope labeling by amino acids in cell culture = 53 III-2-1. Identification of proteins from Leu-d3 labeled samples = 53 III-2-2. Quantitation of protein levels when PTEN was overexpressed or when H2O2 was treated = 55 III-2-3. Cellular localization and ingenuity pathway analysis of PTEN-related proteins = 57 III-3. The tumor suppressor PTEN mediates a negative regulation of E3 ubiquitin protein ligase Nedd4 = 65 III-3-1. Proteomic analysis identified Nedd4 as a PTEN-interacting protein = 65 III-3-2. Nedd4 blocks PTEN-induced cell apoptosis = 69 III-3-3. Nedd4 down-regulates PTEN and up-regulates XIAP = 71 III-3-4. The PI3K/Akt/PTEN signalling pathway conversely regulates the level of expression of Nedd4 = 74 III-3-5. Caspases are not responsible for the PTEN-induced down-regulation of Nedd4 = 78 III-3-6. Nedd4 is transcriptionally regulated by PTEN = 79 IV. Discussion = 85 V. References = 95 Supplementary Tables = 108 Abstract in Korea = 126 List of Publications = 128 Acknowledgment = 129-
dc.formatapplication/pdf-
dc.format.extent2928751 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleRegulation of the tumor suppressor PTEN by hydrogen peroxide and an ubiquitin-protein ligase Nedd4-
dc.typeDoctoral Thesis-
dc.format.pagexii, 130 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 생명·약학부-
dc.date.awarded2008. 8-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE