View : 82 Download: 0

Role of the SWI/SNF chromatin remodeling complexes in DNA double strand break repair and damage responses

Role of the SWI/SNF chromatin remodeling complexes in DNA double strand break repair and damage responses
Other Titles
DNA 손상 반응과 이중 나선 절단 복구 과정에 있어서 SWI/SNF 복합체의 역할
Issue Date
대학원 생명·약학부
이화여자대학교 대학원
Double-strand breaks (DSBs) of chromosomal DNA, the most destructive form of DNA damage, can be generated by exposure to ionizing radiation (IR), and also naturally occur during the nuclear processes such as DNA replication. Unless accurately and efficiently repaired, DNA DSBs can result in chromosomal instability and cancer development. Given that eukaryotic genome exists in compact chromatin, repair as well as detection of DSBs must occur in the context of chromatin structure. The SWI/SNF complexes, belonging to the ATP-dependent chromatin remodeling complex family, are capable of modulating chromatin structure to regulate transcription. Recent studies suggest that SWI/SNF functions as a tumor suppressor. However, how SWI/SNF exerts this function has remained unclear. In an effort to address this issue, I investigated not only potential role of SWI/SNF in DSB repair and damage responses but also the molecular mechanisms underlying this function. First, I found that the SWI/SNF complexes facilitate DSB repair by promoting the phosphorylation of H2AX after DNA damage, and that SWI/SNF exerts this function by directly binding to the chromatin surrounding a DSB, providing the first case of ATP-dependent chromatin remodeling being directly implicated in DNA repair in mammalian cells. In addition, I demonstrated that SWI/SNF prevents cells from undergoing apoptosis after DNA damage by ensuring the maintenance of the G2/M checkpoint as well as timely elimination of unrepaired DSBs that could otherwise lead to excessive prolongation of p53 activation. Finally, I investigated the molecular mechanisms by which SWI/SNF facilitates the H2AX phosphorylation and DSB repair. I demonstrated that there exists a novel SWI/SNF-mediated histone crosstalk through which H2AX phosphorylation and H3 acetylation are stimulated by each other in a positive activation loop, which probably leads to alterations of nucleosomes at DSB sites in such a way that the access of repair machinery to DNA is facilitated. These results revealed a number of novel aspects of ATP-dependent chromatin remodeling factors functioning in DNA repair and damage responses, and also elucidated the molecular mechanisms of how chromatin remodeling factors facilitates DNA repair. Therefore, the findings presented in this thesis not only provide novel insights into the understanding of the tumor suppressor function of the SWI/SNF complexes in the context of DNA repair as well as their well-established role in transcription, but they also link for the first time ATP-dependent chromatin remodeling to histone code in DNA repair and presumably also in other chromatin-templated biological processes.;DNA 가 받을 수 있는 여러 손상 중에서 이중 나선 절단(DSBs; Double Strand Breaks)은 가장 치명적인 손상으로서 우리 몸이 이를 정확하고 신속하게 복구하지 못하게 되면, 유전자는 안정성을 잃고 암으로 진행될 확률이 매우 높아진다. DSBs는, 방사선에 의해, 혹은, DNA 복제 과정과 같은 자연적인 세포내 반응을 통해서 발생될 수 있다. DSB 복구가 크로마틴 (chromatin) 상에서 일어나기 때문에, 복구가 진행되기 위해서는 크로마틴 구조의 변화가 필수적이다. SWI/SNF 복합체는 ATP 가수 분해 에너지를 이용해 크로마틴 구조를 변형시키는 단백질로서, 전사 과정시 크로마틴 구조를 변형시키는 것으로 잘 알려져 있다. 최근 연구를 통해 SWI/SNF 복합체가 암 억제제로서의 기능이 있음이 밝혀졌으나, 그 구체적인 역할은 모르는 상태이다. 이에 본 논문에서는 DSB 복구체계에 있어서 SWI/SNF 복합체의 역할과, 나아가 분자생물학적 메커니즘을 조사하였다. 첫째, BRG1 이 유전체 안정성 유지에 결정적인 역할을 하는 새로운 암 억제인자인 히스톤 H2AX 의 인산화, 즉 γ-H2AX 형성의 촉진을 통하여 DSB 복구에 직접 참여한다는 사실을 처음으로 밝혔다. 이는 SWI/SNF 복합체가 전사 활동 조절을 통하지 않고, 크로마틴에 직접 작용하여 유전체 안정성 유지를 조절하는 암 억제 기능이 있다는 것을 의미하는 것이다. 이에 덧붙여, SWI/SNF 복합체가 DSB 복구를 도울 뿐 아니라 G2/M 체크포인트를 유지시켜줌으로써 DNA 손상에 대한 세포자기사멸 (apoptosis) 을 억제시킴을 알았다. 또한, SWI/SNF 복합체에 의해 DSB 복구가 적절히 이루어지지 않을 때, DNA 손상으로 활성화되는 p53 이 계속적인 DNA 손상 신호를 보내게 됨으로 세포자기사멸이 증가하게 됨을 알았다. 마지막으로, 111 SWI/SNF 복합체가 γ-H2AX 를 통해 DSB 복구에 참여하는 분자생물학적 기전을 조사했다. 이를 통해, H2AX 인산화와 H3 의 아세틸화 사이에 SWI/SNF 복합체를 매개로 하는, histone crosstalk 이 있음을 밝혔다. 이는 세포 내에서 양성 활성화 고리로 작용하여 손상된 뉴클레오좀 부근의 배열을 바꿈으로써 복구 단백질들의 접근을 용이하게 할 것으로 생각된다. 이 결과는 포유류에서 처음으로, DNA 복구 측면에서 SWI/SNF 복합체의 분자생물학적인 기능을 밝히고, 히스톤 변형과 크로마틴 리모델링 복합체와의 관련성에 대해서 제시한 점에서 큰 의의가 있다고 할 수 있다.
Show the fulltext
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.