View : 542 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author황영주-
dc.creator황영주-
dc.date.accessioned2016-08-26T10:08:53Z-
dc.date.available2016-08-26T10:08:53Z-
dc.date.issued1998-
dc.identifier.otherOAK-000000023817-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/198970-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000023817-
dc.description.abstract전이원소 칼코게나이드 물질들은 그들의 특이한 전도성, 열전성, 자성, 촉매나 윤활제로서의 유용성 그리고 열역학적 성질 때문에 지금까지 많은 주목을 받아 왔다. 본 연구에서는 특히 윤활제로서(1장)와 광촉매물질(2장)로서의 칼코게나이드 물질들에 관한 연구가 수행 되었다. 1장에서 우리는 층상구조를 가지는 고체 윤활 물질인 WS_(2) 를 합성하고 그것의 윤활 거동을 관찰하였다. 본 연구는 고체 윤활제로서 유용한 형태인 fullerene-like WS_(2)로부터 얻을 수 있는 잇점들과 CS_(2) 기체를 이용하여 WO_(3) Precursor로부터 그것을 합성하는 조건에 관해서도 기술하고 있다. 분말 X-선 회절법에 의한 분석을 통해 fullerene-like 물질들의 layers 가 2H-WS_(2)의 layers 보다 더욱 commensurate됨을 확인하였고, carrier mixture에 섞인 수소 기체가 WO_(3)를 환원 시키는 것을 돕는 작용을 하여 반응 시간을 줄이는 것도 관측하였다. 본 연구에서는 기상 전이법에 의한 2H-WS_(2) 합성도 시도 되었는데, SEM, XRD에 의한 분석을 통하여 공업용으로 수입 시판되는 WS_(2)보다 훨씬 순수하고, 잘 발달된 layers를 가지는 WS_2를 합성하였음을 확인하였고 friction test 결과 윤활제로서도 상당한 긍정적 결과를 얻을 수 있었다. 2장에서는 zeolite cavities내에서 전이 원소 칼코게나이드 clusters의 합성을 시도하였으며 그것의 수소 발생 실험을 통해 태양 에너지 전환의 효율에 관한 연구가 수행 되었다. 본 연구에서는 zeolite Y를 사용하여 그것 내에 촉매물질로서 CdS와 electron sink로서 Pt을 embedded 시켰으며, CdS는 먼저 Cd^(2+)이온을 이온교환시킨 후 Na_(2)S용액으로 sulfidation시켰으며, Pt는 Pt(NH_(3))_(4)^(2+)를 이온교환시킨 후 activation, reduction과정을 거쳐 Pt cluster를 형성하였다. Zeolite Y내에 CdS의 존재 여부는 IR spectra와 U.V. reflectance peak를 통해 확인하였는데, blue shift에 의한 band gap의 변화는 0.03-0.12eV 정도로 계산 되었다. Zeolite pore분석은 BET& Langmuir method와 분말 X-선 회절법에 의해 수행 되었다. 분석 결과, 전체적인 zeolite frame work strudture가 계속 유지되고 있음을 확인했으며, zeolite Y 내에 CdS cluster 가 형성됨에 따라 그 양이 많아질수록 zeolite phase에 의한 XRD peak의 intensity가 점점 감소하는 것으로 보아 zeolite Y내에 CdS 형성에 따라 가중되는 응력이 작용하고 있음을 유추해볼 수 있었다. CdS와 Pt의 함량은 ICP-AES에 의해 측정 되었는데, 그 결과 sample A가 가장 많은 CdS 함량을 가짐을 보였다. 수소 발생 실험은 hole scavenger로서 sodium tartrate를 사용하는 system에서 수행 되었고, sample C가 가장 작은 Pt함량을 가짐에도 불구하고 이 system에서 가장 유용한 촉매(69μL/㎎)임을 알 수 있었다. 실험 결과 수소 발생의 효율 증진을 위해 platinization은 매우 중요한 과정이나 incorporation시키는 Pt의 양이 중요한 역할을 하는 것은 아님을 확인하였다.;The chalcogenides of the transition elements have received considerable attention due to their interesting properties such as conductivity, thermoelectrcity, magnetic properties, effectiveness as catalysts and as lubricants, and thermodynamic properties. In these researches, we studied about transition metal dichalcogenide materials as lubricants(Chap. 1) and photocatalysts(Chap. 2). In chap. 1, we made dichalcogenide solid lubricant material, WS_(2) with layered structure and observed its lubrication mechanism. This research describes the effective form as a solid lubricant and find effective synthetic condition from WO_(3), to fullerene-like WS_(2) using CS_(2) gas. It is found that the fullerene-like WS_(2) material has many advantages as a solid lubricant. X-ray diffraction patterns show layers of fullerene-like material can be more commensurate than those of 2H-WS_(2-) And we found hydrogen gas in carrier mixture helps reducing WO_(3). We also tried to make 2H-WS_(2) lubricant by vapor phase transport method. SEM, friction tests show that the synthesized WS_(2) have well-defined layered structure and optimistic results as a lubricant. In chap. 2, we tried to make transition metal chalcogenide clusters in cavities of zeolite and study efficiency in solar energy conversion and hydrogen evolution process. In this research, an integrated chemical system, zeolite Y embedded by CdS particles as a photocatalyst and Pt cluster as an electron sink, was constructed. CdS clusters in zeolite Y have been prepared by ion exchange reaction of Cd^(+2),into the zeolite followed by sulfidization with Na_(2)S in solution. Pt particles are supported on zeolite Y by ion exchange reaction of Pt(NH_(3))_(4)^(2+). After ion exchange reaction, activation and reduction processes are carried out to make Pt^(2+) ions to Pt clusters. The existence of CdS clusters in the cavities of zeolite Y is indicated from IR spectra. U.V. reflectance peak shows blue shift from that of bulk CdS, which is also an identification of CdS clusters in zeolite Y. From the spectra, the change in band gap of CdS was calculated about 0.03 - 0.12eV. Zeolite pore structure analysis was accomplished by the BET&Langmuir method and XRD diffraction technique. From these results, it is suggested that CdS clusters were formed in zeolite framework and this formation leads to the entire zeolite structure suffering an internal pressure. X-ray analysis showes that peaks corresponding to the zeolite phase become less intense as increasing the amount of CdS clusters in zeolite Y. Even though total structure was not deformed. The content of CdS and Pt was determined by ICP-AES. According to this element analysis, CdS concentration is very high for sample A. Even though the exact reason of this high concentration is not apparent. The efficiency of the solar energy conversion and the hydrogen evolution was measured in the system using sodium tartrate as a hole scavenger. we could observe the sample C is most effective photocatalyst(69 μL/mg) in this system. It is considered that, even though platinization is very important for improving the efficiency of hydrogen evolution, its amount is not so important for hydrogen evolution efficiency.-
dc.description.tableofcontents목차 = ⅲ List of Figures = ⅴ List of Tables = ⅶ Abstract = ⅷ Chapter.1 Solid Lubricant Material Research = 1 Ⅰ. Introduction = 2 Ⅰ-1. The lubrication mechanism for solid lubricants such as WS_(2) and MoS_(2). = 2 Ⅰ-2. Oxidation of WS_(2) fllm in humid environment = 4 Ⅰ-3. Morphology of nested fullerene-like nanostructuers = 6 Ⅱ. Experimental = 8 Ⅱ-1. Synthesis = 8 Ⅱ-1-1. Solid-gas reaction = 8 Ⅱ-1-2. Vapor phase transport method = 9 Ⅱ-2. Measurements = 10 Ⅱ-2-1. Powder X-Ray Diffraction = 10 Ⅱ-2-2. Scanning Electron Microscopy = 10 Ⅱ-2-3. Friction Tests = 10 Ⅲ. Results and Discussion = 12 Ⅲ-1. The kinetics of solid(WO_(3))-gas(CS_(2)) reaction = 12 Ⅲ-2. The WS_(2) solid lubricant synthesized by the vapor phase transport method = 14 Ⅳ. Conclusion = 20 Ⅴ. References = 21 Chapter.2 Photocatalyst Semiconductor Material Research = 22 Ⅰ. Introduction = 23 Ⅰ-1. Semiconducting transition metal chalcogenides as a photocatalyst = 23 Ⅰ-2. Small-Particle Research & Zeolite as a Capping Material = 26 Ⅱ. Experimental = 35 Ⅱ-1. Synthesis = 35 Ⅱ-1-1. Preparation of Pt-loaded zeolites = 35 Ⅱ-1-2. Preparation of CdS clusters in zeolite Y = 36 Ⅱ-2. Measurements = 37 Ⅱ-2-1 Optical absorption spectra = 37 Ⅱ-2-2. IR spectra = 38 Ⅱ-2-3. X-ray Powder Diffraction = 38 Ⅱ-2-4 Quantitive analysis of Cd and Pt in zeolite = 38 Ⅱ-2-5. Hydrogen Evolution = 38 Ⅱ-2-6. Pore structure analysis = 40 Ⅲ. Result & Discussion = 41 Ⅳ. Conclusion = 64 Ⅴ. References = 66 국문 초록 = 71 감사의 글 = 73-
dc.formatapplication/pdf-
dc.format.extent3671156 bytes-
dc.languageeng-
dc.publisherThe Graduate school of Ewha Womans University-
dc.subjectSemiconducting Chalcogenide-
dc.subjectLubricant-
dc.subjectPhotocatalyst-
dc.subject칼코게나이드-
dc.titleSynthesis and Characterization of Semiconducting Chalcogenide for Lubricant and Photocatalyst-
dc.typeMaster's Thesis-
dc.title.subtitle고체 윤활제와 광촉매 재료로서의 칼코게나이드 물질의 합성과 물성연구-
dc.format.pageix, 72 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학과-
dc.date.awarded1998. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE