View : 22 Download: 0

활동주의 기하수업의 효과에 대한 연구

Title
활동주의 기하수업의 효과에 대한 연구
Other Titles
THINKONG OF MATHEMATICS LEARNING EFFECT RESULT ACTIVISM GEOMETRY TEACHING METHOD
Authors
신선희
Issue Date
1993
Department/Major
교육대학원 수학교육전공
Keywords
활동주의기하수업효과수학교육
Publisher
이화여자대학교 교육대학원
Degree
Master
Advisors
이종희
Abstract
활동주의 수학교육 방법의 하나인 Freudenthal의 재발명 방법이 교수-학습원리로 널리 받아들여지고 알려져 있으나 학습 현장에는 제대로 실현되지 못하고 있다. 학생들에게 이러한 경험을 제공하는 것이 의의있다고 생각한다. 이에 본 연구는 Freudenthal의 재발명 방법에 의한 국소적 조직화의 경험 및 조별 활동을 통한 기하 수업이 기하 학습의 학업 성취도를 향상시키는지 알아보기 위해 다음의 가설에 따른 실험 연구를 하였다. 1. Freudenthal의 재발명 방법에 의한 국소적 조직화의 경험 및 조별 활동을 통한 기하 수업과 전통적인 설명식 기하 수업 사이에 기하 학습의 학업 성취도에서 유의적인 차이가 있는가 ? 2. 실험 집단과 통제 집단의 상위, 중위, 하위 그룹 각각에서 기하 학습에 대한 학업 성취도에서 유의적인 차이가 있는가 ? 이러한 가설을 검증하기 위하여 학력고사를 실시하였고 통계적 방법을 통하여 결과를 분석하였다. 위의 분석의 결과, 국소적 조직화의 경험 및 조별 활동을 통한 기하 수업과 전통적인 설명식 기하 수업 사이에 기하 학습에 대한 학업 성취도에서 유의적인 차이가 있음을 알 수 있었다. 또한 실험 집안과 통제 집단의 학업 성취도에서 상위, 중위, 하위 그룹에서 각각 기하 학습에 대한 학업 성취도에서 유의적인 차이가 있음을 알 수 있었다.;Re-invention method, one of the Activity-Oriented mathematical education is known as teaching-learning pinciple but not worked in practice. In this research, in order to find out that Geometry teaching by means of the experience of local organization through re-invention by Freudenthal and group-learning activity develop the achievement of learning about Geometry learning, the following problem were selected and analyzed. 1. Do meaningful differences in the achievement of learning about Geometry learning which result from between Geometry teaching by means of the experiences of local organization by re-invention method of Freudenthal and group-learning activity and Geometry teaching by means of traditional, explicative method? 2. Do meaningful difference in the achievement of learning about Geometry learning occur among group in which the achievement of Geometry learning of two group - treatment and control-are high average low? To analyze the above research problems, investigations were carried and the results were statistically analyzed. As a result of this research , it showed that there are the meaningful differences in the achievement of learning about Geometry learning between Geometry teaching by means of the experiences of local organization through re-invention and group-learning activity and Geometry teaching by means of traditional ,explicative method. And it showed that the achievement of learning has the meaningful differences about Geometry learning in among group in which the achieve ment of leaning of the group are high, average and low. In order that students think themselves, ask some questions ,think out creative ideas ,solve problems actively , they should acquire the mathematical thinking method, using various activities with the adequate and abundant experiences. Using the group activity, teachers encourage students to surmise whether it is true or not after investigating the situation. And then they can help the students explain to the other students what they think right. Through the approriate questions they can also help the students find out the methods for themselves and change them when they are inadequate. So the teachers should choose the information which is useful to mathematical methods and activity in given information by the experiences of the students, not by the transmission of the simple fact or information. Conducting mental process of the students desirably, they can have the students achieve the object of mathematics learning and reduce the difficulties which the students encounter. Teachers must also continue to seek ways to apply about different field because mathematizing - local organization which is carried in this paper is possible not only in Geometry but in the different field.
Fulltext
Show the fulltext
Appears in Collections:
교육대학원 > 수학교육전공 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE