View : 40 Download: 0

數學敎育에 있어서 Ausubel의 有意味的 說明學習의 再吟味

數學敎育에 있어서 Ausubel의 有意味的 說明學習의 再吟味
Other Titles
Issue Date
교육대학원 수학교육전공
이화여자대학교 교육대학원
現在 數學敎育이 당면하고 있는 問題點은 대부분의 學生들이 數學을 어렵고 지루한 과목이라고 느끼고 있는 점이라 할 수 있는데 本 稿는 Ausubel의 有意味的 說明學習理論을 통해 이러한 問題點을 타개할 하나의 方法論을 찾고자 하는 것이다. 그것은 數學이 無意味하고 價値없다고 느끼게 된 원인이 교과의 論理와 학생의 論理 즉, 心理의 乖雌 에서 온 것이라면 Ausubel의 理論이 論理와 心理 사이의 融合을 위한 어떤 실마리를 제공해 줄 수 있다고 믿기 때문이다. 하지만 表面上으로 Ausubel理論은 해결되어야 할 몇가지 난제를 가지고 있는데 즉, 그는 發見學習에 상대되는 되는 說明式學習을 그 授業理論으로 채택하고 있으며 흔히 認識論上 情報接合論的 經驗論에 속하는 것으로 알려져 있다는 점이다. 그러나 數學의 性格上 數學敎育에서는 發見學習의 過程 中心의 原理가 절대 支持될 必要가 있다. 本 穡는 이러한 Ausubel의 授業原理가 本質上 發見學習의 메카니즘 크게 벗어나지 않음을 糾明하는데 초점을 맞추었다. 이를 위해 2장에서는 Ausubel理論을 소개하며, 제 3장에서는 擧習理論의 歷史的 측면에서 Ausubel의 이론을 분석하며 제4장에서는 Piaget理論의 입장에서 Ausubel의 理論을 살펴보며 , 제 5장에서는 Bruner 理論의 입장에서 Ausubel의 理論을 조명하고, 제6장에서는 Ausubel의 先行組織者理論에 따라 先行組識者의 모델을 4가지 제시하고 거기에 따른 實際 授業 指導案을 作成해 보았다.;Now, one of the most greatest problem of mathematics education is that most of the students feel that mathematics is difficult, dull, and valueless. This is a problem of 'gap' between the logic of contents in the curriculum and the psychology of students. In this thesis, we tried to find the method to fill this gap by introducing Ausubel's meaning verbal learning because Ausubel's learning theory is postulating the whole perspectives among the concepts. But, externally, there is an obstacle to be removed in order to introduce Ausubel's theory to mathematics education because Ausubel emphasizes verval or receptional learning instead of discovery learning and it is said that Ausubel has a empirical view in epistemology and in mathematics education discovery learning theory must be supported because mathematics is constructive essentially. The aim of this thesis is to reanalyses Ausubel's meaningful verbal learning theory as a hopeful theory in mathematics education. In this work, "assimilation" will be a key concept which connects Ausubel with Piaget and Bruner, who are representatives of the discovery learning supporters. This thesis has five parts as following: chapter 2 which introduces a general theory of Ausubel's meaningful theory - meaningful and verbal aspects and his advance organizer theory. Chapter 3 which shows indirectly that Ausubel's meaningful learning theory and discovery learning theory are not different in the objectives of the two theory. Chapter 4 which introduce Piaget's methematical epistemology and educational suggestions and clarifies the connection between Ausubel and Piaget. Chapter 5 which introduces Bruner's discovery learning and structure of a subject and the connection between Ausubel and Bruner. Chapter 6 which exemplifies 4 advance organizer models and a instructional guidance planning. Through above researches we conclude that Ausubel meaningful verval learning theory isn't different from the discovery learn-ing theory and it can help to resolve the problem of mathematics education. Swadener, E.B (1977), "The Effects of Two Types of Advance. Organizer Presentation on Preschool Children's Classification, Relations, And Transfer Task Performance", Doctorial dissertation of the Univ. of wisconsin. Thom, R. (1972), "modern Mathematics: does it exist?" Developments in mathematical Education, Cambridge Univ. Press, 1973, 99. 194-209. Weil, M. Jouce, B. (1978), Information Processing Models of Teaching, New Jersey: Prentice-Hall, Inc. Yawkey, T.D. (1975), "Developmental Mathematics and the Young Child: A Piaget Rationale, "ERIC documents ED 121452.
Show the fulltext
Appears in Collections:
교육대학원 > 수학교육전공 > Theses_Master
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.