View : 568 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author임진경-
dc.creator임진경-
dc.date.accessioned2016-08-26T12:08:45Z-
dc.date.available2016-08-26T12:08:45Z-
dc.date.issued2003-
dc.identifier.otherOAK-000000071233-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/190376-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000071233-
dc.description.abstractThe deer antler, widely prescribed as a valuable oriental drug from the ancient times, has been reported to have the diverse pharmacological activities. However, its main components for the physiological activities have not yet been fully resolved. The purpose of this study is to structurally characterize and synthesize the main components and their derivatives of deer antler, and to investigate their biological activities, in particular, their hematopoietic function. We have studied the structures and hematopoietic function of new compounds of monoacetyldiglycerides (MADGs) and lysophosphatidylcholine (lysoPC) in deer antler and their related analogous substances. Since the hematopoietic stimulating factor, MADGs, in deer antler have not yet been structurally resolved in detail, this study carried out the in-depth structural characterization of the MADGs isolated from bovine udder. Their chemical structures were characterized using a variety of 1-D and 2-D nuclear magnetic resonance and collision-induced dissociation tandem mass spectrometry coupled with fast atom bombardment. These compounds were characteristic of an acetyl functional group at their sn-3 position. Althogh the MADGs exhibited the activity of protein kinase C-a (PKC-α) in K562 cells, the hematopoietic function was not observed unexpectedly. Thus, a new substance analogously related to the compounds in deer antler, N-stearoyl-O-phosphocholine-D-serine methyl ester ((S)-NALPCE), was synthesized. This study has investigated the hematopoietic functions of (S)-NALPCE in K562 cells. The human leukemic cell line K562 is a pluripotent stem cell widely used for hematopoietic differentiation including megakaryocytes, erythrocytes, neutrophil, and granulocytes. In this study, the K562 cell line underwent megakaryocytic differentiation in response to the (S)-NALPCE stimulation. The expression of a megakaryocytic cell surface marker, CD41, increased in a time dependent manner in K562 cells induced by (S)-NALPCE, compared with that of untreated controls. After an extended exposure to (S)-NALPCE, the cells showed a wide variety of morphological changes including macrophage?like shapes with long and thin extensions from the cell margins. It seemed that such a megakaryocytic differentiation resulted from a distinct increase in H_2O_2 production and mitogen-activated protein kinase (MAPK) activation, and an involvement of phosphoinositide-3 kinase (PI3 kinase), while hardly involved PKC-α. H_2O_2 was elevated by ~3 fold in K562 cells with (S)-NALPCE treatment and the elevation was effectively inhibited by pretreatment with catalase. (S)-NALPCE stimulated the subcellular translocation of PKC-α from the cytosol to the membrane, and activated MAPK member, MAP kinase kinase (MEK) and extracellular signal regulated kinases (ERK) 1/2. In spite of these activations, the PKC-α, H_2O_2, and ERK1/2 induced the megakaryocytic differentiation by 23%, 61%, and 67%, respectively. The (S)-NALPCE-induced megakaryocytic differentiation of K562 cells seems to be mediated by the H_2O_2 → PKC-α → ERK1/2 and H_2O_2 →→ PI3 kinase cascades. Our cDNA microarray analysis to characterize the genes expressed during differentiation represented 17 genes with increased expression levels in (S)-NALPCE-treated K562 cells, which were categorized into four groups: chemokine; surface antigen; transcription factors involved in activation and differentiation of hematopoietic cells; oncogenes and protein kinases activated in hematopoietic cells. To find a gene related to hematopoiesis, Rac2 gene selected among the 17 genes was confirmed using Northern blot analysis and reverse transcription-polymerase chain reaction. Unexpectedly, the Rac2 gene was not a signaling molecule in the megakaryocytic differentiation in a retro-virus infection experiment, but a resultant product of neutrophilic differentiation in the K562 cells treated with (S)-NALPCE, which was characterized by the expression level of the surface marker CD16 for neutrophilic cell line with Rac2. A cell cycle analysis in the (S)-NALPCE-treated K562 cells showed polyploidization as well as cell arrests at the G2/M phase in the beginning stage of treatment and thereafter at the G0/G1 phase. After the (S)-NALPCE treatment in a time dependent manner, an increased level of polyploidy cells was in a good agreement with functional maturation (CD41 expression). In a comprehensive investigation on the regulation of CKIs and cyclins during differentiation, the following patterns of change were observed in protein expression: (1) up-regulations of p21, p53 and down-regulation of c-Myc; (2) down-regulation of cyclin E and up-regulation of p27; (3) down-regulation of cyclins B1. Taken together, (S)-NALPCE induced both megakaryocytic differentiation and polyploidization in the K562 cells, whose putative signaling cascade was discussed. (S)-NALPCE as an inducer of hematopoietic differentiation, seems to possess a considerable potential to be applicable to medical therapy of hematological diseases.;녹용은 고대로부터 중요한 한약재 중의 하나로서 널리 사용되어 왔으며 다양한 약물학적인 효능이 알려져, 녹용의 생리활성 물질을 규명하기 위한 연구가 광범위하게 진행되어 왔다. 그러나 지금까지의 많은 노력에도 불구하고 아직도 생리활성을 나타내는 녹용의 주요 성분에 대한 규명이 미흡한 상태이다. 본 연구의 목적은 녹용의 주요성분에 대한 구조를 분석하고 관련 유사물질을 합성하여 이 물질들의 생리활성, 특히 조혈작용을 규명하는 것이다. 본 연구실에서는 녹용의 생리활성 물질을 지난 십 여년 간 연구하여 녹용으로부터 조혈모세포 촉진인자를 개발하였다. 그러나 녹용에서 추출된 조혈모세포 촉진인자인 monoacetyldiglyceride (MADG)의 구조가 명확히 분석되지 못하여, 본 연구에서는 소 젖으로부터 MADG를 추출하여 이 물질의 구조를 보다 정확하게 분석하였다. 1차원 및 2차원 핵자기공명 분광기와 고분별능 탄뎀 질량분석기를 이용하여 MADG의 구조를 분석하였다. MADG의 조혈작용 기구를 규명하기 위해 K562 세포에 MADG를 처리하여 protein kinase C-a (PKC-α)의 활성을 관찰하였다. MADG는 K562 세포에서 PKC-α 활성을 나타내었음에도 불구하고 예상외로 조혈작용을 보이지는 않았다. 그리하여 녹용에서 분석된 물질의 관련 유사 화합물인 N-stearoyl-O-phosphocholine-D-serine methyl ester ((S)-NALPCE)를 합성하여 이 물질의 조혈작용을 연구하였다. 본 연구에 사용된 K562 세포는 사람의 백혈병 세포로서 거핵구, 적혈구, 호중구, 대식세포 등 다양한 혈 세포로 분화될 수 있어 조혈작용 연구에 많이 사용되고 있다. (S)-NALPCE 처리한 K562 세포의 거핵구로의 분화능을 CD41 항체를 이용하여 관찰하였다. K562 세포는 (S)-NALPCE 처리에서 시간의 경과에 따라 대식세포와 같이 세포 끝에서부터 길고 가는 모양이 발생하였다. 이러한 분화 중 거핵구 분화능에 관한 기구를 규명하고자 PKC-α, 활성산소종 (reactive oxygen species, ROS), mitogen-activated protein kinase kinase (MEK), extracellular signal regulated kinases 1/2 (ERK1/2)와 같은 여러 종류의 kinase에 대한 세포 내에서의 활성화와 이 kinase의 활성화가 분화기구에 관여되는지의 여부를 연구하였다. 그 결과 PKC-α가 활성화되었고, H_2O_2가 초기 신호전달 물질로서 3배 정도 증가하였으며, ERK1/2의 활성화가 관찰되었다. 이러한 활성화가 나타남에도 불구하고 거핵구 분화에 관계되는 정도는 PKC-α 가 23%, H2O2가 61%, 그리고 ERK1/2가 67%로 나타났다. 이러한 결과로부터 거핵구 분화에 위와 같은 kinase들 이외의 다른 신호전달 물질이 관여될 수 있다고 판단되어 PI3 kinase에 대한 연구를 실시하였으며, PI3 kinase가 K562 세포의 거핵구 분화에 관여함이 나타났다. 지금까지의 결과에 근거하여 (S)-NALPCE를 처리한 K562 세포의 분화는 H_2O_2 → PKC-α → ERK1/2 와 H_2O_2 →→ PI3 kinase와 같은 복잡한 신호전달 체계를 통해 이루어질 것으로 유추된다. 이러한 거핵구로의 분화가 일어날 때 유전자의 변화는 어떻게 될까? 본 연구는 (S)-NALPCE를 처리한 K562 세포에서 cDNA microarray를 이용하여 17개 유전자의 변화를 분석하였고, 발현된 17개의 유전자들은 chemokine, surface antigen, 조혈세포 분화와 활성에 관계된 transcription factor, 조혈세포의 활성화에 관계된 단백질과 같은 4 종류로 나타났다. 이 17개 유전자들 중 Rac2가 (S)-NALPCE를 처리한 K562 세포의 분화에 관계된 유전자인지를 규명하였다. 먼저 Northern blot과 reverse transcription-polymerase chain reaction를 이용하여 cDNA microarray를 통해 나타난 Rac2유전자의 발현을 다시 확인하였다. Rac2 유전자의 거핵구 분화 관계성에 대한 연구는 Rac2 mutant 유전자 (transfected Phoenix-ampho packaging cell line)를 이용하여 수행하였다. Retro-virus가 약 20% 감염된 K562 세포에서 Rac2 유전자는 거핵구 분화에 관여하는 것이 아니라, 호중구로의 분화에 의해 나타난 것임이 CD16 항체 실험에서 확인되었다. 세포의 분화에는 항상 cell cycle이 arrest되며, 특히 거핵구로의 분화에는 다배체화 (polyploidization) 현상이 수반된다. (S)-NALPCE 처리한 K562 세포에서 다배체화는 시간에 따라 증가하였으며, 초기에 G2/M arrest가 나타나고 그 후 G0/G1 arrest가 관찰되었다. 또한 Western blot 실험에서 시간에 따라 p21, p53, p27 단백질은 발현이 증가되었으며, cyclin B1, cyclin E, c-Myc 단백질은 발현이 감소되었다. K562세포는 (S)-NALPCE 처리에 의해 거핵구로의 분화와 함께 다배체화 현상을 보였다. 이러한 현상이 동시에 나타난 경우는 이전에 연구된 바 없으며, 따라서 (S)-NALPCE는 새로운 화합물로서의 중요한 의미를 갖는다고 생각된다. (S)-NALPCE는 거핵구와 호중구 같은 조혈세포로의 분화를 유도함으로써 혈액관련 질병의 치료에 사용될 수 있는 잠재력이 큰 신물질이라 사료된다.-
dc.description.tableofcontentsContents = i List of Figures = v List of Tables = viii List of Abbreviations = ix Abstract = xii I. Introduction = 1 II. Isolation and Characterization of Monoacetyldiglycerides from Bovine Udder = 6 1. BACKGROUND = 6 2. MATERIALS & METHODS = 9 2.1. Isolation of monoacetyldiglycerides from bovine udder = 9 2.2. NMR analyses = 10 2.3. Thin-layer chromatography = 10 2.4. Mass spectrometry = 10 3. RESULTS & DISCUSSION = 14 4. CONCLUSION = 27 III. Functional Characterization of (S)-NALPCE = 28 1. BACKGROUND = 28 1.1. Signaling molecules and related genes during megakaryocytic differentiation = 31 1.1.1. Potential role for PKC in regulating differentiation = 31 1.1.2. ROS = 34 1.1.3. MAP kinase = 36 1.1.4. PI3 kinase = 39 1.1.5. Gene expression profiling during differentiation of K562 cells = 41 1.2. Cell cycle on differentiation of myeloid leukemia cells = 44 2. MATERIALS & METHODS = 49 2.1. Chemicals = 49 2.2. Enanatioselective synthesis of NALPC analogs = 50 2.2.1. (R)-NALPC and (S)-NALPC = 50 2.2.2. (R)-NALPCE and (S)-NALPCE = 50 2.3. Cell culture = 51 2.4. Viability assays = 51 2.5. Differentiation = 53 2.6. Flow cytometry = 53 2.7. Isolation of cytosolic and membrane fractions = 53 2.8. Western blot analysis of PKC-α = 54 2.9. Measurement of ROS production = 54 2.10. Western blot analysis of MAP kinase = 55 2.11. mRNA isolation = 55 2.12. cDNA microarray analysis = 56 2.13. Northern blot analysis = 57 2.14. RT-PCR and PCR sequencing = 58 2.15. Stable virus packaging cell lines, infection of K562 cells, and flow cytometric analysis = 58 2.16. Cell cycle analysis = 59 2.17. Cell lysates and Western blot analysis = 60 3. RESULTS = 61 3.1. PKC-α activation and megakaryocytic differentiation of MADG = 61 3.2. Effect of NALPC analogs on megakaryocytic differentiation = 61 3.3. Cytotoxicity of (S)-NALPCE = 63 3.4. Cell Growth = 63 3.5. Megakaryocytic differentiation of K562 cells treated by (S)-NALPCE = 67 3.6. PKC-α expression during (S)-NALPCE-induced megakaryocytic differentiation = 72 3.7. Generation of ROS by (S)-NALPCE during megakaryocytic differentiation = 72 3.8. MAPK-dependent and ?independent pathways of megakaryocytic differentiation by (S)-NALPCE = 80 3.9. PI3 kinase effect on megakaryocytic differentiation by (S)-NALPCE in K562 cells = 84 3.10. Differential gene expression profiles in a human hematology array using cDNA array (406 spots) = 85 3.11. Northern blot and PCR analysis of differential expression = 89 3.12. Relation of Rac2 gene to megakaryocytic differentiation = 89 3.13. (S)-NALPCE induces not only megakaryocytic differentiation but also neutrophilic differentiation of K562 cells = 93 3.14. Signaling mechanism of (S)-NALPCE- induced neutrophilic differentiation = 96 3.15. Cell cycle analysis of (S)-NALPCE-induced K562 cells = 96 3.15.1. Polyploidization of K562 cells induced by (S)-NALPCE = 96 3.15.2. Cell cycle regulators in K562 cells treated with (S)-NALPCE = 101 4. DISCUSSION = 107 4.1. Identificaiton of differentiation mechanism in (S)-NALPCE-treated K562 cells = 108 4.2. Cell cycle analysis in (S)-NALPCE-treated K562 cells = 116 References = 123 국 문 요 약 = 154 Acknowledgement = 157 Appendix A = 159 Appendix B = 161-
dc.formatapplication/pdf-
dc.format.extent1612589 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleIdentification and functional analysis of monoacetyldiglycerides and their derivatives derived from deer antler-
dc.typeDoctoral Thesis-
dc.format.page161 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 분자생명과학부-
dc.date.awarded2003. 2-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE