View : 630 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김관묵-
dc.contributor.author이선민-
dc.creator이선민-
dc.date.accessioned2016-08-25T11:08:49Z-
dc.date.available2016-08-25T11:08:49Z-
dc.date.issued2011-
dc.identifier.otherOAK-000000066476-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/188903-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000066476-
dc.description.abstractPart Ⅰ Amino acid 와 Amino alcohol 은 대표적인 chiral 물질로써, D-amino acid 는 의약품, 식품 혹은 생리활성 물질의 중간체 및 원제로 사용된다. 그러나 D-amino acid의 경우, 자연적으로 얻어지지 않으므로 이들의 합성은 중요하다. 박테리아 세포벽의 alanine racemase를 기초로 하여 고안된 ARCA(alanine racemase chiral analogue)는 L-amino acid를 D-amino acid로 변환시킨다. 기존의 ARCA의 stereoselectivity를 높이기 위해 (S)-1-(3-((1-(3-formyl-2-hydroxynaphthalen-1-yl)naphthalen-2-ylo xy)methyl)phenyl)-3-phen ylurea(1)이 디자인되었다.. Receptor 1은 L-amino acids 와 DMSO-d6 에서 반응하여 imine 을 형성하고, 여기에 TEA 을 첨가하면 시간의 변함에 따라 1H-NMR spectrum 이 변함을 관찰 할 수 있다. L-form 의 peak 가 시간이 지나면서 점점 줄어들고, D-form 의 peak 가 늘어나는 것으로 L-amino acid 가 D-amino acid 로 변환되는 것을 확인하였다. 더 나아가 Receptor 1은 입체 선택성을 가지고 racemic amino alcohol 과 결합한다. (S)-form 으로 존재하는 receptor 1은 (S)-amino alcohol 보다 (R)-amino alcohol과 더 잘 결합한다. 뿐만 아니라 receptor 2 는 Chloroform 과 같은 끓는 점이 낮아 회수하기 쉬운 용매에 잘 녹는 특징을 사용하여 시간과 비용의 절약의 좋은 이점을 가지고 있는 Shuttle process 를 시행 하였다. Receptor와 amino acid 를 각각 물 층과 유기 층에 용해시키면 각 층 사이에서는 가역적인 반응이 일어나게 된다. 즉, Receptor 와 amino acid 사이의 imine 결합의 형성이 일어나는데 이때, shuttle process 라는 과정을 통하여 D-amino acid 를 분리할 수 있다. 즉, 구조적으로 안정한 D-amino acid와 receptor 사이의 imine 형성 결과 receptor 가 잘 용해되는 유기 층에 D-amino acid 가 존재하게 되고 선택 성이 낮은 L-amino acid 는 물 층에 존재하게 된다. 이들 과정들은 thermodynamic control 로 설명 할 수 있으며, 평형에 도달하면 선택성은 변하지 않는다. 반응 후 유기 층만을 분리하여 0.1N HCl 을 가하여 hydrolysis 를 하게 되면 amino acid가 protonation 되면서 더 이상 가역적인 반응은 일어나지 않게 된다. 유기 층에 activation energy 가 낮은 L-amino acid와 receptor 의 imine 결합이 먼저 깨지게 되며 반응이 진행됨에 따라 D-amino acid 의 enantiomeric excess(e.e)값이 >95%까지 올라 갈 수 있게 된다. 이로써 receptor 를 통하여 amino acid 로 부터 D-amino acid 의 분리를 할 수 있었다. Part Ⅱ 기존의 ARCA(alanine racemase chiral analogue) 와 다른 functional group 을 사용함으로써 selectivity 차이를 알아보기 위하여 (S)-1-(2-(1-(3-formyl-2-hydroxynaphthalen-1-yl)naphthalen-2-yloxy)ethyl)-3-pheny lurea(12) 와 (S)-(E)-1-(4-(1-(3-formyl-2-hydroxynaphthalen-1-yl)naphthalen-2-yloxy)but-2-enyl)-3-p-tolylurea(13) 을 합성하였다. (S)-1-(2-(1-(3-formyl-2-hydroxynaphthalen-1-yl)naphthalen-2-ylo xy)ethyl)-3-phenylurea(12)는 기존의 합성된 (S)-1-(3-((1-(3-formyl-2-hydroxynaphthalen -1-yl)naphthalen-2-yloxy)methyl) phenyl)-3-phenylurea(1) 화합물의 benzyl 기를 linear alkyl 기로 치환하여 합성하였다. (S)-(E)-1-(4-(1-(3-formyl-2-hydroxynaphthalen-1-yl)naphthaene-2-yloxy)but -2-enyl)-3-p-tolylurea(13)는 (S)-1-(2-(1-(3-formyl-2-hydroxynaphthalen-1-y l)naphthalen-2-yloxy)ethyl)-3-phenylurea(12) 보다 alkyl chain을 길게 하고 다른 hybridization 인 double bond를 사용하여 합성하였다.;Amino acid and amino alcohol are the most representative chiral materials. In particular, D-amino acids are used in food technology and as drug intermediates in Pharmaceuticals. Nevertheless, compared to L-amino acids, these D-amino acids are not abundant in nature. Therefore, the synthesis of D-amino acids in an easy and cost-effective way is very important. The ARCA (alanine racemase chiral analogue), mimicking the alanine recemase of bacterial cell wall, can convert the L-amino acids to D-amino acids. Receptor 1 is designed to enhance the stereoselectivity of existing ARCA as the movement between the naphthalene rings of the receptor is restricted by steric hindrance. Receptor 1 reacts with L-amino acids in DMSO-d6 to form imines. After the addition of TEA, and the time dependant of 1H-NMR spectrum of the imines proves the conversion of the L-amino acids to D-amino acids, through decreasing the L-form imine peak and increasing the R-form imine peak. Furthermore, receptor 1 binds with racemic amino alcohols to form imines. The 1H-NMR spectrum of the imines of the Receptor 1 reveals that the (R)-form amino alcohol has higher selectivity than (S)-form amino alcohol. In case of receptor 2, it is well soluble in chloroform and dichloromethane which has low boiling points. Hence the extraction of amino acids could be done in a cost-effective and time saving manner. Accordingly, the Receptor and amino acids are soluble in a co-solvent of organic layer and water layer respectively. In the presence of a phase transfer catalyst the D-form imine dominant formed between receptor and DL-amino acid are found in the organic layer. It is then separated and hydrolysed with 0.1 N HCl to get D-amino acids; thereby the receptor can be used again. This process is called as the shuttle process of ARCA.-
dc.description.tableofcontentsPart Ⅰ 1 Ⅰ.서론 2 Ⅱ.실험방법 10 Ⅱ-1.시약 10 Ⅱ-2.기기 10 Ⅱ-3.합성 방법 11 Ⅱ-3-1.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-Binaphthyl -3-carboxylaldehyde의 준비 11 Ⅱ-3-1-1.3-ρ-methylphenyluryl-benzylalcohol의 합성 11 Ⅱ-3-1-2.3-ρ-methylphenyluryl-benzylbromide의 합성 11 Ⅱ-3-1-3.(S)-2-methoxymethoxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxaldehyde의 합성 12 Ⅱ-3-1-4.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde 의 합성 13 Ⅱ-3-2.(S)-2-hydroxy-2’-(3-m–methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde의 합성 14 Ⅱ-3-2-1.3-m-methylphenyluryl-benzylalcohol의 합성 14 Ⅱ-3-2-2.3-m-methylphenyluryl-benzylbromide의 합성 14 Ⅱ-3-2-3.(S)-2-methoxymethoxy-2’-(3-m-methylphenyluryl-benzyl)-1,1’-bin aphthyl-3-carboxaldehyde의 합성 15 Ⅱ-3-2-4.(S)-2-hydroxy-2’-(3-m–methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde의 합성 16 Ⅱ-3-3. Amino acid 의 준비 17 Ⅱ-3-4.Amino alcohol 의 준비 17 Ⅱ-3-5.입체 선택성에 관한 반응 18 Ⅱ-3-5-1.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’binaphthyl-3-carboxylaldehyde,(S)-2-hydroxy-2’-(3-m –methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carbo xylaldehyde와 Amino acid의 입체 선택성에 관한 반응 18 Ⅱ-3-5-2.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde,(S)-2-hydroxy-2’-(3-m –methylphenyluryl-benzyl) -1,1’-binaphthyl-3-car boxylaldehyde와 Amino alcohol과의 입체 선택성에 관한 반응 18 Ⅲ.실험 결과 및 토의 19 Ⅲ-1.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde의 합성 19 Ⅲ-2.(S)-2-hydroxy-2’-(3-m–methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde의 합성 21 Ⅲ-3.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde (2)의 L-amino acids 에서 D-amino acids 로의 전환 반응 22 Ⅲ-4.(S)-2-hydroxy-2’-(3-m-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde (3)의 L-amino acids 에서 D-ami no acids 로의 전환 반응 24 Ⅲ-5.(S)-2-hydroxy-2’-(3-ρ-methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde (2)에 2-amino-1-butanol 의 입체 선택성에 관한 반응 27 Ⅲ-6.(S)-2-hydroxy-2’-(3-m–methylphenyluryl-benzyl)-1,1’-binaphthyl-3-carboxylaldehyde (3)에 2-amino-1-butanol 의 입체 선택성에 관한 반응 29 Ⅲ-7.Shuttle process 31 Ⅳ.결론 33 Ⅴ.참고 문헌 35 Ⅵ.Appendixes 39 Part Ⅱ 49 Ⅰ.서 론 50 Ⅱ.실험 방법 51 Ⅱ-1.시약 51 Ⅱ-2.기기 51 Ⅱ-3-1.합성 방법(1) 52 Ⅱ-3-1-1.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde의 준비 52 Ⅱ-3-1-1-1.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-cyanomethoxy-3-carboxylic acid 52 Ⅱ-3-1-1-2.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-aminoethoxy-3-methyl alcohol의 합성 53 Ⅱ-3-1-1-3.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-methyl alcohol의 합성 54 Ⅱ-3-1-1-4.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde의 합성 55 Ⅱ-3-1-2.Amino acid 의 준비 56 Ⅱ-3-1-3.Amino alcohol 의 준비 56 Ⅱ-3-1-4.입체 선택성에 관한 반응 57 Ⅱ-3-1-4-1.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde (12)와 Amino acid의 입체 선택성에 관한 반응 57 Ⅱ-3-1-4-2.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde (12)와 Amino alcohol과의 입체 선택성에 관한 반응 57 Ⅱ-3-1-2.실험 결과 및 토의 58 Ⅱ-3-1-2-1.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde의 합성 58 Ⅱ-3-1-2-2.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde (12)의 L-amino acids 에서 D-amino acids 로의 전환 반응 59 Ⅱ-3-1-2-3.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-(phenylurylethoxy)-3-carboxaldehyde (12)에 2-amino-1-prop anol 의 입체 선택성에 관한 반응 61 Ⅲ-3-2.합성 방법(2) 64 Ⅲ-3-2-1.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-[ρ-methylphenyluryl-2-buthoxy]-3-carboxaldehyde의 준비 64 Ⅲ-3-2-1-1.(S)-[1,1’-Binaphthalene]-2,2’-dihydroxy-3-methyl alcohol의 합성 64 Ⅲ-3-2-1-2. Compound (20)의 합성 65 Ⅲ-3-2-1-3. Compound (21)의 합성 66 Ⅲ-3-2-1-4. Compound (22)의 합성 67 Ⅲ-3-2-1-5. Compound (23)의 합성 68 Ⅲ-3-2-1-6.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-[ρ-methylphenyluryl-2-buthoxy]--3-methylalcohol (24) 의 합성 69 Ⅲ-3-2-1-7.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-[ρ-methylphenyluryl-2-buthoxy]-3-carboxaldehyde 의 합성 70 Ⅲ-3-1-2.실험 결과 및 토의 71 Ⅲ-3-1-2-1.(S)-[1,1’-Binaphthalene]-2-hydroxy-2’-[ρ-methylphenyluryl-2-buthoxy]-3-carboxaldehyde의 합성 71 Ⅳ.결론 73 Ⅴ.참고 문헌 74 Ⅵ.Appendixes 75 ABSTRACT 88-
dc.formatapplication/pdf-
dc.format.extent1863835 bytes-
dc.languagekor-
dc.publisher이화여자대학교 대학원-
dc.titleEnantioselective Recognition of Amino Acid and Amino Alcohol by Novel ARCA System-
dc.typeMaster's Thesis-
dc.creator.othernameLee, Sun Min-
dc.format.pagexix, 89 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2011. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE