View : 99 Download: 0

Simultaneous Electrochemical Measurement of Nitric Oxide and Oxygen or Nitric Oxide and Carbon Monoxide Released by Electrical Stimulation in Rat Neocortex

Simultaneous Electrochemical Measurement of Nitric Oxide and Oxygen or Nitric Oxide and Carbon Monoxide Released by Electrical Stimulation in Rat Neocortex
Issue Date
대학원 화학·나노과학과
이화여자대학교 대학원
The goal of this thesis is to provide a comprehensive development process of dual microsensors and their usage in vivo. This thesis is composed of three chapters. First chapter discussed comprehensive development process of dual microsensor which can simultaneously measure NO/O2 concentration levels. Second chapter is about its usage in measuring NO/O2 contents to reveal their relationships in vivo. Third chapter describes the sensor detecting NO/CO concentration level instead of NO/O2. Chapter I, a planar-type amperometric dual microsensor was developed for the simultaneous measurement of the nitric oxide (NO) and oxygen (O2) concentrations. The sensor (overall diameter = ~500 μm) consisted of a dual working electrode (WE) containing two platinized platinum microdisks (25 μm diameter, WE1, WE2, distance between two disks > ~330 μm) and a Ag/AgCl wire reference electrode covered with an expanded poly(tetrafluoroethylene) gas-permeable membrane. The differentiation and concurrent measurements of NO and O2 were obtained successfully using two sensing WEs with different applied potentials (+0.75 V for WE1 and -0.4 V for WE2). Cross-talk between WE1 and WE2 was eliminated with an optimized internal solution composition. Linear dynamic range, selectivity, sensitivity, detection limit (<5 nM for NO; <500 nM for O2), and stability (>50 h) were evaluated. Chapter II reported a real-time study of the co-dynamical changes in the release of endogenous nitric oxide (NO) and oxygen (O2) consumption in a rat neocortex upon electrical stimulation in vivo using an amperometric NO/O2 dual microsensor. Electrical stimulation induced transient cerebral hypoxia due to the increased metabolic demands that were not met by the blood volume inside the stimulated cortical region. A NO/O2 dual microsensor was successfully used to monitor the pair of real-time dynamic changes in the tissue NO and O2 contents. At the onset of electrical stimulation, there was an immediate decrease in the cortical tissue O2 and subsequent increase in the cortical tissue NO content. The peak decrease in O2 was always preceded by the peak increase in NO in all animals (n = 11). The variation in the temporal associations was presumably attributed to the sparse distribution of NOS-containing neurons and the individual animal’s differences in brain vasculatures, which suggests that a sensor with fine spatial resolution is needed to measure the location-specific real-time NO and O2 contents. The developed NO/O2 dual microsensor is effective for measuring the NO and O2 contents in vivo. This study provides direct support for the dynamic role of NO in regulating the cerebral hemodynamics, and contributes to the development of a novel therapeutic biosensor for the treatment of cerebral hypoxia, which is a neurological condition that causes a significant decrease in the level of tissue oxygenation. Chapter III presented a plannar-type amperometric dual microsensor for simultaneous detection of nitric oxide (NO) and carbon monoxide (CO). The dual sensor consisted of dual platinum disks (76 μm diameter, WE1, WE2, distance between two disks ~100 μm) as working electrode and Ag/AgCl counter/reference electrode covered with an expanded PTFE membrane. The WE1 was modified with electrochemical deposition of Sn and the WE2 was electrochemically deposited with nano structured Pt-Fe(III) which showed higher selectivity to NO oxidation versus CO. Anodic currents independently measured at WE1 and WE2 were successfully converted to the concentrations under the condition of copresent NO and CO. Selectivity, sensitivity, detection limit were estimated. Using the NO/CO dual microsensor, real-time, simultaneous and quantitative measurements of dynamic changes of NO and CO generated by the electrical stimulation in a rat neocortex in vivo have been made. ;이 논문은 크게 NO와 O2, NO와 CO를 동시에 측정할 수 있는 이중 미세센서를 개발하는 과정을 설명하는 I, III장과 그것을 이용하여 생체 내에서 NO와 O2의 관계, 또는 NO와 CO의 관계를 측정해 내는 II, III장으로 구성되어있다. I장 에서는 NO와 O2를 동시에 측정하기 위하여 전류측정방식의 이중 미세센서를 개발하였다. 센서(전체크기 = ~500 μm)는 두 개의 백금이 전기화학적으로 입혀진 백금 작업전극(지름 = 25 μm, 두 전극 사이의 거리 > ~330 μm) 과 기준/상대전극인 Ag/AgCl로 구성되어 있으며, PTFE 기체투과성 막으로 쌓여있다. NO와 O2의 측정은 적용된 포텐셜 (작업전극1에는 +0.75 V, 작업전극2에는 -0.4 V)이 다른 두 작업전극을 사용하였기 때문에 가능하였다. 두 작업전극 간의 혼선은 최적화된 내부 용액을 통하여 제거하였다. 선형 역동 범위와, 선택성, 민감도, 측정 한계 (NO는 <5 nM; O2는 < 500 nM) 그리고 안정성 (> 50 h)이 평가 되었다. II장 에서는 쥐의 두뇌 신피질에서 전기자극에 의해 내생성 NO가 방출되고 O2가 소모되는 것을 NO/O2 이중 미세센서를 통하여 측정하였다. 전기자극은 일시적인 뇌의 저산소증을 유발한다. 이는 전기자극으로 인해 신진대사 요구량이 늘어남에도 불구하고 대뇌피질의 혈액량이 부족하기 때문이다. 이중 미세센서는 NO와 O2의 활발한 변화를 실시간으로 관찰하는데 성공하였다. 전기자극이 시작되면, 대뇌피질의 O2가 즉각적으로 감소하고, 이어서 NO가 증가한다. NO/O2 이중 미세센서는 NO와 O2를 생체 내에서 측정하는 것에 효과적이다. 이 실험은 NO가 뇌의 혈류역학을 조절한다는 것을 지지하며, 뇌의 저산소증을 감지할 수 있는 새로운 바이오센서를 개발하는 것에 기여한다. III장은 NO와 CO를 동시에 측정할 수 있는 전류측정방식의 이중 미세센서를 보여준다. 센서(전체크기 = ~500 μm)는 두 개의 백금 작업전극(지름 = 76 μm, 두 전극 사이의 거리 = ~100 μm) 과 기준/상대전극인 Ag/AgCl로 이루어져 있으며, PTFE 기체투과성 막으로 쌓여있다. 작업전극1은 주석이 전기화학적으로 입혀져 있으며, 작업전극2는 CO와 NO 중NO가 선택적으로 산화되는 나노 구조의 Pt-Fe(III) 층이 있다. NO와 CO가 동시에 존재하고 있을 때, 각각 작업전극 1과 2에서 측정되는 전류는 NO와 CO의 농도로 전환 할 수 있다. 이 센서의 선택성, 민감도, 측정 한계 그리고 안정성은 평가 되었으며, 이 NO/CO 이중 미세센서를 이용하여 쥐의 대뇌 신피질에 전기자극을 하였을 때, NO와 CO의 농도를 실시간으로 동시에 측정하였다.
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.