View : 753 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김관묵-
dc.contributor.author가혜림-
dc.creator가혜림-
dc.date.accessioned2016-08-25T10:08:00Z-
dc.date.available2016-08-25T10:08:00Z-
dc.date.issued2010-
dc.identifier.otherOAK-000000060351-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/185921-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000060351-
dc.description.abstractPart &#1030; 박테리아 세포벽의 alanine racemase를 기초로 하여 고안된 ARCA (alanine racemase chiral analogue)는 L-amino acid를 D-amino acid로 변환시킨다. 기존의 ARCA의 stereoselectivity를 높이기 위해 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(4,5-digydro-N-phenyl-1H-imidazol-2-amine))-3-carboxaldehyde(1) 과 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(1,4,5,6-tetrahyro-N-phenylpyrimidin-2-amine))-3-carboxaldehyde(2)가 디자인되었다. 기존의 ARCA들과 비교했을 때 구조의 특성상 형성되는 charge로 인하여 receptor의 selectivity가 향상될 것이라고 기대되었다. Amino acid와 amino alcohol은 대표적인 chiral 물질이다. 하지만 D-amino acid는 자연적으로 얻어지지 않는다. D-amino acid는 의약품, 식품 혹은 생리활성 물질의 중간체 및 원제로 사용되기 때문에 이들의 합성은 중요하다. Receptor 1과 2는 L-amino acids와 DMSO-d6에서 반응하여 imine을 형성하고, 여기에 TEA을 첨가하면 시간의 변함에 따라 1H-NMR spectrum이 변함을 관찰할 수 있다. L-form의 peak가 시간이 지나면서 점점 줄어들고, D-form의 peak가 늘어나는 것으로 5-20배 정도의 선택성을 갖는다. 더 나아가 receptor 1과 2는 입체 선택성을 가지고 racemic amino alcohol과 결합한다. (S)-form으로 존재하는 receptor1과 2는 (S)-amino alcohol보다 (R)-amino alcohol과 3-10배 정도 더 잘 결합한다. 뿐만 아니라 receptor1과 2는 Chloroform와 Dichloromethane과 같은 끓는점이 낮아 회수가 쉬운 용매에 잘 녹는 특징을 사용하여 시간과 비용의 절약의 좋은 이점을 가지고 있는 Reaction extraction을 시행하였다. 2equiv의 amino acid와 receptor를 각각 물 층과 유기 층에 용해시키면 각 층사이에서는 가역적인 반응이 일어나게 된다. receptor와 amino acid는 imine결합을 이루게 되며 receptor는 구조적으로 안정한 형태를 선호하게 된다. 구조적으로 안정한 D-amino acid과 receptor의 imine결합은 다량 receptor가 잘 녹는 유기 층에 존재하게 되며 물 층에는 receptor와 선택성이 떨어지는 L-amino acid가 존재하게 된다. 이들 과정들은 thermodynamic control로 설명 할 수 있으며, 평형에 도달하면 선택성은 변하지 않는다. 반응 후 유기 층만을 분리하고 0.1N HCl을 가하여 hydrolysis를 하게 되면 amino acid기 protonation되면서 더 이상 가역적인 반응은 일어나지 않게 된다. 유기 층에 activation energy가 낮은 L-amino acid와 receptor의 imine결합이 먼저 깨지게 되며 반응이 진행됨에 따라 D-amino acid의 enantiomeric excess(e.e.)값이 >95%까지 올라가는 것을 NMR로 확인하였다. pH에 따라 이들은 thermodynamic 과 kinetic으로 control될 수 있으며 이로써 amino acid에 대한 손쉬운 광학 이성질체 분리 방법의 가능성을 보았다. Part Ⅱ 기존의 ARCA의 유도체인 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(2-methyl(phenyl)guanidine)-3-carboxaldehyde(3)과 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxaldehyde(4)를 합성하였다. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(2-methyl(phenyl)guanidine)-3-carboxaldehyde(3)은 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-guanidinobenzyl)-3-carboxaldehyde의 guanidinium ligand에 methyl기를 치환한 화합물로써, Part 1의 합성 과정의 중간 단계인 14를 이용하여 합성하였다. 또한, (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxaldehyde(4)은 연구실에서 이미 밝혀진 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-phenylurylbenzyl-3-carboxaldehyde 화합물의 benzyl기를 linear alkyl기로 치환하여 합성하였다. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxalde hyde(4)의 합성 과정은 <Section 1>과 <Section 2>로 나누어 두 가지의 합성 과정을 개발하였다. <Section 1>에서는 Part 1에서 합성 과정의 하나인 (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-hydroxy-3-carboxaldehyde(11)을 이용하여 합성한 것이고, <Section 2>에서는 (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-3-carboxylic acid(28)을 사용함으로써 합성 과정을 훨씬 줄일 수 있었고, (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxaldehyde(4)은 4단계를 거쳐 합성하였다.;Amino acid and amino alcohol are most representative chiral material. But D-amino acid is not able to get by natural consequences. Optically pure D-amino acids are of increasing industrial importance as chiral building blocks for the synthesis of pharmaceuticals, food ingredients, and drug intermediates. Preparation of most D-amino acids requires high cost due to the lack of natural sources. Thus, it is very important that synthesize D-amino acid. The ARCA(alanine racemase chiral analogue), based on alanine racemase of bacterial cell wall, can convert L-amino acid to D-amino acid. Receptor 1and 2 are designed for enhance the stereoselectivity of existing ARCA. In this context, I have develoted a new imidazolium-based receptor 1 which provides the charge-reinforced hydrogen bond (CRHB) and high enantioselective recognition toward amino acids and amino alcohols. Extractive resolution of enantiomers is a chirotechnology of current industrial interest for large-scale production due to time-saving and cost-effective process. I tested the stereoselective extraction of amino acids with compound 1. Excess racemic leucine in 1.0ml water at pH 8 was stirrid with 1 in 1.0ml CDCl3. 1H NMR of the chloroform layer at 1h confirmed the imine formation between 3 and leucine, which 1-D-Leu is more than 1-L-Leu by a factor of 4.5. The stereoselectivities for the extraction of alanine and valine under the same conditions were observed to be 3.3. An advantage of 1 as a chiral extractor is that the amino acid and 1 are easily separated form the imine by convenient pH control. Treatment of the CDCl3 layer containing the imine of 1-Leu with 0.1N HCl dissociated the imine immediately to 1 in the organic layer and amino acid in the aqueous layer.-
dc.description.tableofcontentsPart I Chirality conversion and enantioselective extraction of amino acids by imidazolium-based binol-aldehyde 1 I. 서론 2 II. 실험방법 11 II-1. 시약 11 II-2. 기기 12 II-3. 합성 방법 13 II-3-1. (S)-[1,1-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine))-3-carboxaldehyde(1)의 준비 13 II-3-1-1. tert-butyl 4,5-dihydro-2-(methylthio)imidazole-1-carboxylate의 합성 13 II-3-1-2. Chloromethyl methyl ether의 합성 14 II-3-1-3. (S)-[1,1’-Binaphthalene]-2,2’-dimethyl methyl ether의 합성 15 II-3-1-4. (S)-[1,1’-Binaphthalene]-3-carboxaldehyde-2,2’-dimethyl methyl ether의 합성 16 II-3-1-5. (S)-[1,1’-Binaphthalene]-3-carboxaldehyde-2,2’-dihydroxy의 합성 17 II-3-1-6. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-hydroxy-3-carboxaldehyde의 합성 18 II-3-1-7. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-nitrobenzyl-3-carboxaldehyde의 합성 19 II-3-1-8. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-nitrobenzyl-3-methylalcohol의 합성 20 II-3-1-9. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-aminobenzyl-3-methylalcohol 의 합성 21 II-3-1-10. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine)-3-methylalcohol 의 합성 22 II-3-1-11. (S)-[1,1’-Binaphthalene]- 2-methyl methyl ether-2’-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine)-3-carboxaldehyde의 합성 23 II-3-1-12. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine))-3-carboxaldehyde(1)의 합성 24 II-3-2. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(1,4,5,6-tetrahyro-N- phenylpyrimidin-2-amine))-3-carboxaldehyde의 준비 25 II-3-2-1. N,N'-Bis(tert-butoxycarbonyl)-2-(1H)-tetrahydropyrimidinethione의 합성 25 II-3-2-2. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-(di-tert-butyldihydro-2-(phenylamino)pyrimidine-1,3(2H,4H)-dicarboxylate)-3-methlyalcohol의 합성 26 II-3-2-3. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-(di-tert-butyldihydro-2-(phenylamino)pyrimidine-1,3(2H,4H)-dicarboxylate)-3-carboxaldehyde의 합성 27 II-3-2-4. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(1,4,5,6-tetrahyro-N-phenylpyrimidin-2-amine))-3-carboxaldehyde(2)의 합성 28 II-3-3. Amino acid의 준비 29 II-3-4. Amino alcohol의 준비 29 II-3-5. 선택성 31 II-3-5-1. L-amino acid에서 D-amino acid로의 전환 반응 31 II-3-5-2. Amino alcohol과의 입체 선택성에 관한 반응 32 II-3-5-3. Reactive extraction과 Hydrolysis 32 III. 실험 결과 및 토의 34 III-1. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine))-3-carboxaldehyde의 합성 34 III-2. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(1,4,5,6-tetrahydro-N-phenylpyrimidin-2-amine))-3-carboxaldehyde의 합성 36 III-3. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine))-3-carboxaldehyde의 L-amino acids에서 D-amino acids로의 전환 반응 36 III-4. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(3-(4,5-dihydro-N-phenyl-1H-imidazol-2-amine))-3-carboxaldehyde에 2-amino-1-propanol의 입체 선택성에 관한 반응 40 III-5. Reactive extraction과 Hydrolysis 45 IV. 결론 48 V. 참고문헌 51 Appendix 55 Part II Synthetic method of ARCA(Alanine Racemise Chiral Analogue) 66 I. 서론 67 II. 실험방법 69 II-1. 시약 69 II-2. 기기 69 II-3. 합성 방법 70 II-3-1. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(2-methyl(phenyl)guanidine)-3-carboxaldehyde의 준비 70 II-3-1-1. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-(ethyl amino-N-phenylmethanethiocarbamate)-3-methlyalcohol의 합성 70 II-3-1-2. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-( ethyl amino-N-phenylmethylguanidine)-3-methlyalcohol의 합성 71 II-3-1-3. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-( ethyl amino-N-phenylmethylguanidine)-3-carboxaldehyde의 합성 72 II-3-1-4. (S)-[1,1’-Binaphthalene]-2-methyl methyl ether-2’-hydroxy-(2-methyl(phenyl)guanidine)-3-carboxaldehyde(3)의 합성 73 II-3-2. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxaldehyde의 준비 74 <1> Section 1 74 II-3-2-1. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxyacetonitrile-3-carboxaldehyde의 합성 74 II-3-2-2. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxyacetonitrile-3- methylalcohol의 합성 75 II-3-2-3. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxyaminoethyl-3- methylalcohol의 합성 76 <2> Section 2 77 II-3-2-4. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxycyanomethoxy-3-carboxylic acid의 합성 77 II-3-2-5. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxycyanomethoxy-3- methylalcohol의 합성 78 II-3-2-6. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3- methylalcohol의 합성 79 II-3-2-7. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxaldehyde(4)의 합성 80 III. 실험 결과 및 토의 81 III-1. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(2-methyl(phenyl)guanidine)-3-carboxaldehyde의 합성 81 III-2. (S)-[1,1’-Binaphthalene]-2-hydroxy-2’-hydroxy-(ethylphenyluryl)-3-carboxaldehyde의 합성 82 IV. 결론 83 V. 참고문헌 84 Appendix 85 Abstract 95-
dc.formatapplication/pdf-
dc.format.extent7159563 bytes-
dc.languagekor-
dc.publisher이화여자대학교 대학원-
dc.titleChirality conversion and Enantioselective separation of amino acids by reactive extraction with ARCA derivatives-
dc.typeMaster's Thesis-
dc.creator.othernameGa, Hye Rim-
dc.format.pagexix, 96 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2010. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE