View : 683 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author김진형-
dc.creator김진형-
dc.date.accessioned2016-08-25T06:08:30Z-
dc.date.available2016-08-25T06:08:30Z-
dc.date.issued2003-
dc.identifier.otherOAK-000000029076-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/182217-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000029076-
dc.description.abstractThe amyloid precursor protein (APP) is a transmembrane protein that produces βA4 amyloid peptide, found in the brains of Alzheimer's disease (AD), by proteolytic cleavage. APP normally undergoes proteolytic cleavage within the Aβ sequence by an unidentified enzyme designated α-secretase, liberating a soluble N-terminal fragment (sAPP). Biological activities of sAPP have been shown to include promotion of neuronal cell survival, adhesive interactions, neurite outgrowth, synaptogenesis, and synaptic plasticity. Neurotransmitters, hormones, or cytokines, as well as other neuroactive compounds that activate PKC and other transduction signals, increase secretion of sAPP via the nonamyloidogenic pathway. Previous studies reported that muscarinic(M1 and M3) receptor activation increase sAPP release. However, the signaling mechanism for the regulation of sAPP release mediated by muscarinic receptor activation is not clearly understood. The purpose of this thesis is the investigation of the signaling mechanism for the regulation of sAPP release mediated by muscarinic receptor activation. Especially the involvement of Ca^(2+) and Pl3-kinase/Akt/ NF-kB signaling pathways are examined in human neuronal cell line, SH-SY5Y, which endogenously expresses both M3 and M1 muscarinic receptor subtypes and APP, and HEK 293 cells transiently transfected with M3 muscarinic receptor. In Chapter 2, first, we confirmed that the activation of muscarinic receptors and PKC increased the sAPP release in a time-dependent manner and these increase were blocked by individually specific antagonists in SH-SY5Y cells. To examine the direct effects of several carboxyl termini Gα peptides on muscarinic receptor-mediated sAPP release, we transiently transfected M3 plus dominant-negative Gα carboxy-terminal peptide to HEK 293 cells and measured the sAPP release. In result, Gα_(q/11) protein itself, but not Gα_(i), or Gα_(s), plays an important direct role in the regulation of M3 receptor mediated sAPP release. Secondly, we tried to investigate the transactivation of epidermal growth factor receptor (EGFR) by muscarinic agonist could regulate the sAPP release in SH-SY5Y cells but, EGFR transactivation may not be involved in muscarinic receptor-mediated sAPP release. Finally, the roles of Ca^(2+) as regulatory mechanisms of sAPP release mediated by muscarinic receptor activation were examined, especially in the involvement of capacitative calcium entry (CCE). M3 receptor-mediated sAPP release might be regulated by increase in [Ca^(2+)]i mediated mainly by Ca^(2+) influx but not by mobilization from intracellular store in SH-SY5Y cells. Ca^(2+) influx through voltage-dependent Ca^(2+) channels, Na^(+)/K^(+) ATPase, or Na^(+)/Ca^(2+) exchanger did not affect both muscarinic receptor-mediated [Ca^(2+)]i pattern and sAPP release, indicating no involvement of those mechanisms in muscarinic receptor-mediated sAPP release in SH-SY5Y cells. On the other hand, Gd^(3+), SKF96365 or 2-APB, known as the potent inhibitors of CCE, significantly inhibited Ca^(2+) entry due to muscarinic receptor activation and also blocked oxoM-stimulated sAPP release in dose-dependent manner. These results indicated that CCE, a refilling mechanism for depleted intracellular calcium stores, plays a central role in muscarinic receptor-regulated sAPP release. In Chapter 3, we tried to examine whether Pl3-kinase/Akt/NF-kB signaling pathways might be involved in the muscarinic receptor-mediated sAPP release. Despite the large body of evidence that sAPP plays important roles in regulating neuronal survival and plasticity, the signal transduction mechanisms that mediate these biological activities have not been established. The pathways downstream of P13-kinase/Akt that result in increased resistance of neurons to death are not well understood, but are believed to involve changes in the expression and/or activity of proteins that modulate apoptotic cascades. First, to examine the involvement of P13-kinase in the regulation of muscarinic receptor-mediated sAPP release, SH-SY5Y cells were treated with Pl3-kinase inhibitors, wortmannin and Ly294002. These inhibitors showed significant inhibitory effects on the muscarinic agonist-stimulated Ca^(2+) influx and sAPP release at the micromolar concentrations. The involvement of Pl3-kinase in muscarinic receptor-mediated sAPP release was confirmed by the observation that overexpression of Pl3-kinase dominant negative construct reduced the oxoM- stimulated sAPP release. Secondly, to define the role of Akt, known as a critical regulator of PI3-kinase-mediated cell survival, in regulating muscarinic receptor-mediated sAPP release, we transiently cotransfected muscarinic M3 receptors and Akt constructs to HEK 293 cells and measured the sAPP release. Muscarinic receptor activation stimulated Akt kinase activities in HEK293 cells contransfected with the muscarinic M3 receptor and wtAkt. Whereas the marked increase of oxoM-induced sAPP release was shown in wtAkt transfected cells, both AktK179M and AktR25C transfected cells did not produce marked increase of sAPP release by treatment of oxoM. These results indicate that Akt could be involved receptor-mediated sAPP release pathway. Finally, we explored the possibility of NF-kB on the regulation of muscarinic receptor-mediated sAPP release in SH-SY5Y cells since Pl3-kinase/Akt pathway might be involved in sAPP release as described previously by our studies and it was shown that Akt activates the transcriptional activity of NF-kB. Involvement of NF-kB in the regulation of muscarinic receptor-mediated sAPP release was confirmed by three agents (BAYll-7085, SN5O and MG132) that have been reported to modulate NF-_(k)B activity. All theses three agents greatly inhibited the muscarinic receptor-mediated sAPP release, indicating NF-kB as a possible important signaling molecule in that response. This study on the mechanisms explaining the muscarinic receptor-mediated sAPP release may lead to a better understanding of the significance of the cholinergic system in the pathophysiology of AD.;아밀로이드 전구단백질 (amyloid precursor protein: APP)는 내재성막 당 단백질 (integral membrane glycoprotein)으로서, 대사과정 중 아밀로이드 펩티드 (amyloid-β peptide Aβ)를 생성한다. 아밀로이드 펩티드는 기억력 저하, 인지능력 저하, 주의력 저하, 사고력 저하와 판단력 저하 등의 임상적 증상과, 대뇌피질과 해마 또는 편도핵에서 neurofibrillary tangle과 senile plaque이 관찰되어지는 병리학적 증상을 나타내는 신경퇴행성 질환의 일종인 Alzheimer disease (AD)에 있어서, 학습과 기억 능력에 손상을 주는 요인으로 작용하는 것으로 알려져 있다. 이에 반해, 정상적인 세포에서 APP의 대사 과정 중에 생성되는 용해성 아밀로이드 전구단백질 (soluble amyloid precursor protein ; sAPP)는 세포 밖으로 분비되어 세포의 생존, 증식과 부착을 조절하면 신경돌기의 발아 후 생육을 유도한다. APP의 분해과정에 대한 많은 연구가 행하여져 왔고, 그 과정에 무스카린성 아세틸콜린 수용체가 관계한다는 사실이 보고되었으나, 무스카린성 아세틸콜린에 의한 sAPP의 정확한 유리조절기전에 대해서는 아직 자세히 밝혀져 있지 않다. 본 연구에서는 무스카린성 아세틸콜린 수용체 subtype중 M3가 다량 발현된 신경세포인 SH-SY5Y neuroblastoma cells이나 M3를 과발현시킨 HEK293 cells를 이용하여 세포 배양액으로부터 유리된 sAPP를 측정하였다. 유리된 sAPP의 양을 측정하기 위한 방법으로, full-length APP (APP_(FL))의 NH_(2) 말단을 인식하는 monoclonal antibody를 사용하여 Western blotting을 시행하였고, ImageGauge 프로그램을 이용하여 정량하였다. sAPP는 정상적인 세포의 대사과정 중 세포배양액으로 유리되고, 무스카린성 효능제인 oxoM이나 protein kinase C (PKC) 활성증가제인 phorbol 12-myristate 13-acetate(PMA)에 의해서 그 유리가 증가하였다. PMA에 의한 것과는 달리, 무스카린성 효능제에 의한 sAPP 증가과정은 세포 밖에서 세포 안으로 유입되는 Ca^(2+)에 의해 조절되었다. 이 때, 무스카린성 효능제에 의한 sAPP 유리증가에 관여하는 Ca^(2+)의 외부로부터 유입은 저해제들을 이용한 실험들을 통해 voltage-dependent Ca^(2+) channel, Na^(+)/K^(+) ATPase이나, 또는 Na^(+)/Ca^(2+) exchanger을 통하지 않고 capacitative calcium entry (CCE)를 통해 이루어지는 것으로 관찰되었다. 이러한 결과는 CCE 억제제에 직접 또는 간접적으로 작용하는 억제제들인, Gd^(3+), SKF96365, 혹은 2-APB를 전처리 했을 때, oxoM에 의한 외부 Ca^(2+) 유입이 차단되고, 이와 동일실험조건에서 oxoM에 의한 sAPP 유리증가에 대한 유의적인 억제가 나타남으로서 확인되었다. CCE는 무스카린성 수용체 활성에 의해 유도되는 세포내 Ca^(2+) 저장소의 고갈을 보충하기 위한 것으로, 본 논문에서의 실험 결과, 무스카린성 수용체 활성화에 의한 sAPP 유리 승가기전에 중요한 역할을 하는 것으로 사료된다. 무스카린성 수용체 활성화에 의한 sAPP 유리 증가기전에 PI3-kinase/Akt/NF-κB pathway가 관여되는지를 알아보기 위하여, 먼저, PI3/PI4-kinase 억제제인 wortmannin과 LY294002를 처리했을 때, oxoM에 의한 sAPP 유리증가가 농도 의존적으로 감소하는 결과가 나타났으며, 이와 더불어, oxoM에 의해 유도된 Ca^(2+) 유입도 억제되는 결과를 얻었다. 또한, PI3-kinase dominant negative construct를 일시적으로 발현시킨 HEK293에서 oxoM에 의한 inositol phosphates의 분해와 sAPP 유리 증가가 억제되는 현상이 나타났다. 이는 무스카린성 수용체 활성화에 의한 Ca^(2+) 유입 (CCE)을 차단시키고, 따라서 sAPP 유리 증가기전를 억제하는 조절과정에 PI3/PI4-kinase 경로가 관여하는 것으로 추론된다. Akt/NF-κB pathway는 대표적인 세포 생존 기전으로, PI3-kinase pathway의 downstream pathway의 하나라고 알려져 있고, 최근 phospholipase C (PLC)-coupled G protein-coupled receptor의 신호전달기전에도 관여된다고 알려져 있으므로, 이러한 경로가 무스카린성 수용체 활성화에 의한 sAPP 유리 증가기전에 관여하는 지를 알아보았다. Akt의 pleckstrin homology domain을 돌연변이 시킨 R25C Akt과 ATP-binding site를 돌연변이 시킨 K179M를 HEK293에 과발현시켜 Akt의 downstream signal을 차단시켰을 때, wild type Akt에 비해, 무스카린성 수용체 활성화에 의한 sAPP 유리증가효과가 억제되는 것으로 나타났다 이때, Akt 활성화는 in vitro kinase assay를 통해 확인하였다. 또한, NF-κB 활성억제제로 알려진, SN50, MG132, 혹은 BAY11-7085를 전처리했을 때, oxoM에 의한 sAPP 유리증가가 농도 의존적으로 감소하는 결과가 나타났으며, 이와 더불어, EMSA를 통해, oxoM에 의해 유도된 NF-κB 결합 능력 또한 NF-κB 활성억제제에 의해 감소되는 결과를 얻었다. 이는 무스카린성 수용체 활성화에 의한 sAPP 유리증가기전에 Akt/NF-κB pathway가 관여하고, 이러한 기전을 통해 유리가 증가된 sAPP는 세포 생존기전에 관여할 것으로 사료된다. 이러한 실험결과를 바탕으로, 무스카런성 수용체 활성화에 의한 sAPP 유리증가기전을 밝힘으로써 AD의 병리 기전을 좀더 명확히 이해하고, 신경보호작용이 있는 것으로 밝혀진 sAPP의 유리를 조절시킴으로 AD의 치료제 개발에 새로운 지표를 제시할 수 있을 것이라고 사료된다.-
dc.description.tableofcontentsContents = ⅳ List of Figures = ⅷ Chapter 1. General Introduction = 1 1. APP Processing = 1 2. Formation of sAPP by a-secretase and its physiological effect = 6 3. Regulation of sAPP release = 9 3.1. Regulation of sAPP release by Tyrosine kinases = 10 3.2. Regulation of sAPP release by C protein-coupled receptors (CPCRs) = 11 3.3. Regulation of sAPP release by PKC = 13 3.4. Regulation of sAPP release by calcium (Ca^(2+)) = 15 3.5. Regulation of sAPP release by Pl3-kinase = 18 3.6. Regulation of sAPP release by PLA_(2)-related pathway = 18 4. Possible signaling system involved in GPCR-regulated sAPP release = 19 4.1. Akt = 19 4.2. NF-kB = 20 5. Research Purpose = 21 References = 23 Chapter 2. Regulation of Muscarinic Receptor-mediated sAPP Release by G-protein and Calcium = 48 1. INTRODUCTION = 48 2. MATERIALS & METHODS = 54 2.1. Materials = 54 2.2. Mammalian cell culture = 55 2.3. Transient transfection of HEK293 cells = 55 2.3.1 β-Gal Staining = 55 2.4. Construction of Ga Carboxyl-terminal Minigenes = 56 2.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) = 58 2.5.1. Isolation of total RNA = 58 2.5.2. Identification of mRNA by RT-PCR = 59 2.6. Measurement of sAPP release = 59 2.6.1. Stimulation and inhibition of sAPP release = 59 2.6.2. Measurements of sAPP release by SDS-PAGE and Westem blotting = 61 2.7 Measurement of changes in [Ca^(2+)]i = 62 3. RESULTS = 63 3.1 Muscarinic receptor-and PKC-activated increases in sAPP release in SH-SY5Y cells = 63 3.2. Regulation of muscarinic receptor-mediated sAPP release by Ga subunits = 63 3.3. Involvement of EGFR cross-talk in muscarinic receptor-mediated sAPP release = 66 3.4. Extracellular Ca^(2+)-dependent muscarinic receptor-mediated increase of sAPP release = 71 3.5. Characterization of the mechanism of Ca^(2+) entry involved in the regulation of sAPP release in SH-SY5Y cells = 76 3.5.1 Voltage-dependent Ca^(2+) channel, Na^(+)/K^(+) ATPase, and Na^(+)/Ca^(2+) exchanger are not involved in muscatinic receptor-mediated sAPP release = 76 3.5.2. CCE is involved in muscarinic receptor-mediated sAPP release = 79 4. DISCUSSION = 96 REFERENCE = 101 Chapter 3. Regulation of Muscarinic Receptor-mediated sAPP Release by Pl3-kinase/Akt/NF-kB Pathway = 117 1. INTRODUCTION = 117 2. MATERIALS & METHODS = 122 2.1. Materials = 122 2.2. Transient transfection of HEK293 cells = 122 2.3. Measurement of inositol phosphate accumulation = 122 2.4. Akt activity assay = 123 2.4.1. Immunoblotting = 123 2.4.2. In vitro kinase assay = 125 2.5. Electrophoretic Mobilityshift Assay (EMSA) = 125 3. RESULTS = 128 3.1. Involvement of Pl3-kinase in muscarinic receptor-mediated sAPP release = 128 3.2. Regulation of muscarinic receptor-mediated sAPP release by Akt = 131 3.2.1. Kinase activity of Akt constructs = 134 3.2.2. Akt activation by muscarinic receptor = 134 3.2.3. Eeffects of Akt mutants on muscarinic receptor-mediated sAPP release = 138 3.3. Regulation of muscarinic receptor-mediated sAPP release by NF-kB activation = 138 4. DISCUSSION = 145 References = 151 Chapter 4. Summary = 163 논문개요 = 166-
dc.formatapplication/pdf-
dc.format.extent6333837 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subjectRegulation-
dc.subjectmuscarinic-
dc.subjectsAPP-
dc.subjectrelease-
dc.titleRegulation of muscarinic receptor-mediated sAPP release-
dc.typeDoctoral Thesis-
dc.format.pagex, 168 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 약학과-
dc.date.awarded2003. 8-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE