View : 1602 Download: 0

증강현실(Augmented Reality) 기반 학습에서 매체특성, 현존감(Presence), 학습몰입(Flow), 학습효과의 관계 규명

Title
증강현실(Augmented Reality) 기반 학습에서 매체특성, 현존감(Presence), 학습몰입(Flow), 학습효과의 관계 규명
Other Titles
Investigation on the Relationships among Media Characteristics, Presence, Flow, and Learning Effects in Augmented Reality Based Learning
Authors
계보경
Issue Date
2007
Department/Major
대학원 교육공학과
Publisher
이화여자대학교 대학원
Degree
Doctor
Abstract
Media has always been an object of interest even before the emergence of advanced types of media, and efforts have been continuously made to link media with education. Thanks to the development of computer technology, the fundamental question of, “Will media improve education capabilities?” has now expanded into a different question: “How will technology change education?”(Banathy, 1991: Reigeluth, 1991). The main area of concern for media researchers, however, still lies in the effectiveness of teaching media(Kim Youngsoo, et al., 2006; Na Ilju, 1994). Despite expectations that media can raise the interest or attention of learners by providing a variety of information, it is difficult to find specific studies examining how media improves learning effects or which features of media are related to learning activities. This study’s goal is to examine which factors of augmented reality (AR), the fruit of future technologies, help to improve learning effects and reveal the relationships of those factors. To that end, we studied preceding researches and selected five factors which can influence learning effects in augmented reality based learning. We discovered the effectiveness structure of media utilization in augmented reality based learning through investigating relations of those factors. The five factors selected were: sensory immersion, navigation, manipulation, presence, and flow. This study examines the relations of those factors based on the following aspects. First, this study, by separating sensory immersion through audio-visual effects from flow, was to examine whether augmented reality’s sensory immersion effect would lead to actual immersion in learning contents and courses and ultimately, to learning effects. Second, in terms of the cognitive aspect of learning effects, we separated acquisition of knowledge from understanding & application for this study. augmented reality technology, which tends to enhance circumstances and context through the combination of reality and virtual reality, is expected to have an effect not only on acquisition and understanding of simple concepts, but also on knowledge application by expanding the scope of learning (Ryu Jihyeon, et al., 2006). Therefore, this study examined whether augmented reality based learning can be meaningfully utilized not in the acquisition of decontextualized knowledge, but in an actual context of knowledge application. Research questions of this study are as follows: What are the relationships of media characteristic, presence, flow, and learning effects in augmented reality based learning? A questionnaire was made based on these research questions and a survey was conducted on 290 fifth graders at two elementary schools in Gyeong-gi province from April 2 to April 26, 2007. A total of 272 cases were examined for this study (incomplete and untrustworthy questionnaires were excluded) and analyzed using a structural equation model. First, in this model, media characteristic factors(sensory immersion, navigation, manipulation) were proven to have the greatest influence on presence, explaining for 76.2% of all its variables. Among media characteristics, sensory immersion in particular was proven to have a direct effect of 0.467 and a manipulation of 0.381, indicating that sensory immersion and manipulation make a great contribution to the prediction of presence. This result supports the theory of Slater and Wilbur(1995) examined by preceding researches and that of Lavroff (1994) which stated that sensory immersion and manipulation had an impact on presence, as well as case studies on virtual environment by Fauland(2002) showing that the higher the sensory immersion perceived by learners, the higher the level of presence in augmented reality based learning. On the other hand, the path coefficient of navigation was 0.140 and did not prove to make a statistically meaningful contribution to the overall improvement of explanation capabilities at the 0.05 level of significance. This runs counter to the commonly discussed existing research results on virtual environment(Schubert et al, 1999) and those on immersive virtual reality, showing the characteristics of augmented reality, which differ from the existing virtual reality. Second, media characteristic factors(sensory immersion, navigation, and manipulation), independent variables, and presence, which is a parameter, explain 36.5% of all variables of flow. In particular, presence had a significant relationship with flow, showing a great effect of 0.604 on the factors’ relative importance and contribution. This result supports the research results of Goh Jaehyeok(2001) and Seo Haerim(2003) which were discussed earlier. In addition, sensory immersion and manipulation proved to have a significant impact on flow, using presence as a parameter. It was proved that navigation did not make a statistically significant contribution to the overall improvement of explanation capabilities. As a result, presence, sensory immersion, and manipulation were proven to be important factors for explaining flow in augmented reality based learning. Third, media characteristic factors(sensory immersion, navigation, and manipulation), independent variables, and the parameters of presence and flow explained 54.9% of all variables of satisfaction. First of all, flow had a high level effect of 0.481 in the level of satisfaction, being in line with the results of other exploratory researches by Novak & Hoffman(1996), Massimini & Carli(1988), Um Myeongyong, et. al., (2005) and Kim Younghee & Kim Youngsoo(2006), which were conducted online, and proving that the higher the flow, the higher the level of satisfaction in the augmented reality based learning environment as well. Also, sensory immersion, manipulation, and presence were all proven to be important factors in predicting satisfaction. Their relative importance and contribution were: manipulation 0.383, presence 0.291, and sensory immersion 0.136. In particular, manipulation, whose importance was not predicted by the existing hypothetic model, was shown to have a significant influence of 0.494 in satisfaction level, revealing that strengthening manipulation through the tangible interface of augmented reality media makes a great contribution to the level of satisfaction. Fourth, media characteristic factors (sensory immersion, navigation and manipulation), independent variables, and the parameters of presence and flow explained 18.5% of all variables in the knowledge and understanding aspects of learning effects. First, flow showed a high level of prediction capability, with a high degree of influence of 0.430 on learning effect of knowledge and understanding. This result supports the previously discussed theories of Mayers(1978), Csikszentmihalyi & Larson(1993), and is consistent with exploratory research results of Kim Youngjin(2000), Park Sungik and Kim Yeonkyung(2006), and Baik Jaeheon(2006), showing that the more learners are absorbed in learning, the higher their learning effect in the aspects of knowledge and understanding. Apart from flow, presence showed a relative importance and contribution of 0.260 and immersion of 0.121 as factors significantly explaining learning effects in knowledge and understanding aspects, while navigation and manipulation did not have significant prediction capabilities. Fifth, media characteristic factors(sensory immersion, navigation and manipulation), independent variables, and the parameters of presence and flow explained 43.1% of all variables in the application aspect of learning effect. First of all, flow had a large effect of 0.435 in the application aspect of learning effect. This result is in line with the previously discussed structure model of Novak and Hoffman (1996) even though their research was about the online environment, showing that the more learners are absorbed in learning, the higher their achievement in terms of application. Also, learning effect in terms of knowledge and understanding had a direct effect of 0.404 on the learning effect of application, proving that the higher the achievement in knowledge and understanding in augmented reality based learning, the higher the achievement in terms of application. In addition, sensory immersion, manipulation and presence provided meaningful explanations of learning effect in terms of application, while navigation did not prove to make a statistically significant contribution to the overall improvement of explanation capabilities. As to the relative importance and contribution level of factors, flow was 0.435 followed by knowledge & understanding 0.404, manipulation 0.285, presence 0.263, and sensory immersion 0.123. In particular, manipulation, whose effect was not predicted by the existing hypothetic model, was shown to have a medium-level influence of 0.185 in application, demonstrating that the methods of augmented reality’s tangible interface manipulation made a contribution to the effects of application as well as on the satisfaction level of learning. This research proves that sensory immersion and manipulation, as media characteristic factors, are important factors in determining presence and flow and that these media characteristic factors are determining factors in learning effect in terms of satisfaction, knowledge & understanding, and application. It also indicates that effective designs of three-dimensional objects and strengthening manipulation through tangible interface are the most essential factors when designing augmented reality based learning media. The results showed that with the exception of navigation, all the factors such as sensory immersion, manipulation, presence, and flow had meaningful influence on satisfaction, knowledge & understanding, and learning effects of application. In particular, manipulation factor through tangible interface(the interface controlling the computer’s virtual imaginary model with real objects), one of the distinct features of augmented reality technology picked up from preceding studies, was proved to have a direct and indirect impact on satisfaction among the learning effect factors. Also, in addition to knowledge & understanding and flow predicted by existing theoretical models, manipulation was also proved to have a direct effect on the application aspect of learning effects, indicating that strengthening manipulation through the tangible interface of augmented reality can be an important factor in learning satisfaction and application fields. This result is in line with the results of the study by Shelton(2003) that reveal that learners can increase their achievement and satisfaction level by raising learners’ sense of control through actual manipulation of learning contents, and that of Billinghurst (2003) where interaction with augmented reality contents using tangible interface will enable learners to experience active learning process and increase knowledge application capability. In addition, sensory immersion as discussed above was proved to have a meaningful influence on immersion in learning and learning effects. These results show that application of augmented reality technology plays a meaningful part in immersion and effect of learning in addition to providing sensory curiosities. In terms of learning effects, application of augmented reality media was shown to have more influence on application factors than on knowledge & understanding. It is consistent with Kim Hoesu’s(1999) study results in which application of augmented reality technology made contributions to the improvement of scientific analysis and general abilities. It was also revealed that navigation factor did not have a meaningful influence on presence. This result runs counter to the outcomes of existing studies about immersive virtual reality, but shows the media characteristics of augmented reality, which are different from those of immersive virtual reality. Based on such study results, I propose the following tasks for follow-up: First, explorative researches through observation, face-to-face conversations, and analysis of video records should be conducted for a more objective and accurate understanding about augmented reality based learning activities. Second, explorative researches through observation, face-to-face conversations, and analysis of video records should be conducted for a more objective and accurate understanding about augmented reality based learning activities. Third, it is necessary to conduct researches which can verify the value of augmented reality as a new teaching & learning method in various objects and subjects. Fourth, there is a need for research to investigate characteristic factors of learners which can be associated with media characteristics of augmented reality based learning, such as sensory immersion through providing 3D information or strengthening manipulation through tangible interface. Fifth, there is a need for research on models that can make optimal combinations of characteristics of knowledge and those of augmented reality media. Sixth, research on analyzing the cognitive process of learners and the designing plans of the analysis based on clear understanding about augmented reality media characteristics is needed. Seventh, there is a need for development of more advanced technology which can maximize interactive features of augmented reality.;매체에 대한 관심은 현대의 발달된 매체가 등장하기 이전에도 항상 존재해 왔으며 이를 교육과 연결시키려는 노력이 끊임없이 지속되어 왔다. ‘매체가 교육력을 향상시켜줄 것인가?’ 라는 근원적인 질문은 최근에 들어와서 컴퓨터 공학이 발달하면서 ‘공학이 교육의 모습을 어떻게 바꾸어 놓을 것인가?’하는 것으로 보다 확장되게 되었다(Banathy, 1991; Reigeluth, 1991). 그러나 아직도 매체 연구자들의 주요 관심은 교수매체의 효과성 측면에 있다 할 수 있다(김영수 외, 2006; 나일주, 1994). 이러한 관심에도 불구하고 매체가 단순히 다양한 정보양식의 제공을 통해 흥미나 관심을 높여줄 것이라는 기대 외에 어떤 이유에서 구체적으로 학습효과를 향상시켜주는지, 또는 이 매체의 어떤 특성이 학습 활동과 어떻게 관련되어 있는지에 대한 연구를 찾기 또한 쉽지 않다(Crook, 1994). 본 연구는 미래기술이 집약된 새로운 매체로서의 증강현실(Augmented Reality: AR)이 기존 매체와 변별되는 어떠한 매체적 특성 요인으로 인해 학습효과를 갖게 되는지 그 핵심요인을 규명하고 요인 간의 관계를 밝히고자 하였다. 증강현실은 실세계와 가상 세계를 이음새없이(seamless) 실시간으로 혼합하여, 사용자에게 보다 향상된 몰입감과 현실감을 제공하는 기술이다(Azuma, 1997). 증강현실은 실제세계에서의 맥락성을 유지하며 가상 객체를 통한 3차원의 증강된 정보를 학습자에게 제공한다. 또한 기존 데스크탑 PC를 통해 지배적으로 활용되어오던 그래픽 인터페이스(Graphic User Interface: GUI) 방식을 뛰어넘어, 구체적인 실제 세계의 사물을 가지고 가상객체를 조작하는 실물형 인터페이스(Tangible User Interface: TUI)를 제공한다. 이러한 매체적 특성으로 말미암아 증강현실은 직관적인 학습, 체험에 의한 학습(learning by doing)과 실제적인 학습(authentic learning), 능동적 학습(active learning)을 가능하게 하는 보다 진보된 학습 매체가 될 것으로 예측된다. 이에 본 연구에서는 관련 선행연구의 고찰을 통해 증강현실 기반 학습에서 학습 효과에 직접 또는 간접 영향을 미칠 수 있는 매체적 특성 요인으로 ‘감각적 몰두’, ‘탐색 가능성’, ‘조작 가능성’을 선정하였다. 나아가 이러한 매체 특성 요인들과 ‘현존감’, ‘학습몰입’, ‘학습효과’ 간의 관계 규명을 통해 증강현실 기반 학습에서 매체 활용의 효과성 구조를 밝히고자 하였다. 위와 같은 연구 목적을 달성하기 위한 연구문제는 다음과 같다. 증강현실 기반 학습에서 기존 매체와 변별되는 증강현실 매체 특성 요인으로서 감각적 몰두, 탐색 가능성, 조작 가능성과 현존감, 학습몰입, 학습효과(만족도, 지식?이해, 적용)의 관계는 어떠한가? 연구 변인의 선정에 있어 본 연구에서는 특히 다음의 요인에 주안점을 두어 그 관계를 밝히고자 하였다. 첫째, 단순한 시청각적 효과를 통한 증강현실 객체에 대한 몰두(sensory immersion)와 학습자체에 대한 몰입(flow)을 구분하여, 기존 증강현실이 갖는 강한 매체적 흡입력으로서의 감각적 몰두가 실제 학습내용 및 과정 자체에 대한 몰입 및 궁극적인 학습효과로 이어지는지를 살펴보고자 하였다. 둘째, 학습효과의 인지적 측면에 있어 단순한 지식의 습득 및 이해와 적용을 구분하여 살펴보았다. 증강현실 기술은 실제(reality)와 가상(virtuality)의 결합을 통해 상황성과 맥락성을 강화시키는 특성을 지니고 있어 교수학습 상황에서도 학습 맥락을 증폭시켜 단순한 개념의 습득이나 이해 차원을 넘어서 적용 부분에 있어 효과를 가질 것으로 예측된다. 이에 증강현실 기반 학습이 기존 개념 이해 중심의 비맥락화된 지식(decontextualized knowledge)의 습득이 아닌 지식이 활용되는 실제적 맥락 속에서 의미있게 활용될 수 있도록 지원하는지를 살펴보고자 하였다. 위와 같은 연구문제를 바탕으로 경기도 지역 2개 초등학교의 5학년 학생 290명을 대상으로 증강현실 기반의 수업을 실시하였으며, 차시별로 각각 구름의 생성 원리에 대한 실험, 응결핵을 통한 비의 생성 원리 실험 및 온도와 습도 조절에 따른 증발과 응결(눈과 비의 생성) 실험, 물의 여행 전체 과정에 대한 관찰 활동에 실험활동형의 증강현실 콘텐츠를 활용하였다. 수업 후 실시된 검사지 측정과 성취도 평가 결과, 누락되거나 불성실한 설문을 제외한 272명(93.7%)의 사례를 연구에 활용하였으며, 연구 목적에 따라 구조방정식 모형(structural equation model)을 활용하여 분석을 실시하였다. 연구모형에 대한 확인적 요인분석과 구조방정식 모형 검증 결과, 연구초기에 설정된 총 8개의 가설적 경로 중 7개의 경로가 유의수준 .001 수준에서 유의하다고 판명되었으며, 탐색 가능성→현존감에 대한 1개의 가설적 경로는 유의도 .05 수준에서 유의한 영향을 미치지 못하는 것으로 나타났다. 또한 신규 가설경로로 조작 가능성→만족도, 조작 가능성→적용 경로가 각각 .001과 .01의 수준에서 유의한 경로로 추가되었다. 최종 모형에 대한 χ2검증 및 모형적합도 검증 결과는 χ2=274.715(p=0.004), df=215, χ2/df=1.278(권장수준 1~2사이), GFI=0.922(권장수준 0.9이상), AGFI=0.900(권장수준 0.9이상), TLI=0.978(권장수준 0.9이상), CFI=0.981(권장수준 0.9이상), RMSEA=0.032(권장수준 0.5이하)로 나타났다. 특히, 초기 연구 변인의 선정에 있어 주안점을 두었던 요인으로 감각적 몰두는 현존감과 학습몰입을 매개로 학습 효과에 유의한 영향을 미치는 것으로 나타나, 증강현실 매체의 활용이 단순한 감각적 호기심 제공을 뛰어넘어 학습 자체에 대한 몰입과 효과에도 의미있게 작용함을 보여주었다. 또한 학습효과 측면에 있어서는 개념?이해 요인보다 적용 요인에 증강현실 매체의 활용이 더 큰 설명력을 갖는 것으로 나타나, 증강현실의 활용이 기존 개념 이해 중심의 비맥락화된 지식의 습득을 넘어서 실제적 맥락 속에서의 적용에 의미있는 효과를 가짐을 보여주었다. 더불어, 증강현실 기술의 변별되는 특성 중의 하나인 실물형 인터페이스를 통한 ‘조작 가능성’ 요인의 경우, 학습효과 요인 중 ‘만족도‘와 ‘적용’에 간접효과 뿐만이 아닌 직접효과를 가짐을 살펴볼 수 있었다. 이러한 결과는 학습자가 학습내용을 실제로 조작함으로써 콘텐츠에 대한 학습자 통제감을 높여 학습의 성취 및 만족감을 높일 수 있다는 Shelton(2003)의 연구결과 및 실물형 인터페이스를 이용한 증강현실 콘텐츠와의 상호작용이 능동적인 학습과정을 경험하며 지식의 적용 능력을 높이게 된다는 Billinghurst(2003)의 주장을 지지하는 것이라 할 수 있다. 한편 본 연구에서 ‘탐색 가능성’ 요인의 경우, ‘현존감’에 유의한 영향을 미치지 않는 것으로 나타났는데, 이는 기존에 흔히 논의되었던 몰입형 가상현실에서의 연구 결과와는 배치되는 것으로, 몰입형 가상현실과는 차별화된 증강현실의 매체 특성을 보여주는 것으로 시사된다. 이상의 연구결과를 바탕으로 본 연구에서는 다음과 같은 후속과제를 제안하였다. 첫째, 관찰, 면담, 비디오 기록 분석 등을 활용한 증강현실 활용 학습 과정에 대한 탐색적 연구가 필요하다. 둘째, 이동성기반, 협력적 학습상황에서 등 보다 다양한 증강현실 기반 콘텐츠 유형을 활용 학습상황에서에서 증강현실의 학습매체로서의 효과성을 검증할 수 있는 연구가 필요하다. 셋째, 보다 다양한 대상과 교과, 학습상황에서의 새로운 교수학습매체로서의 증강현실의 가치를 검증할 수 있는 연구가 필요하다. 넷째, 증강현실 기반 학습에서 매체특성, 예컨대 3차원 정보제공을 통한 감각적 몰두나 실물형 인터페이스를 통한 조작 가능성 강화 등과 결합될 수 있는 학습자 특성 요인들을 규명하기 위한 연구가 필요하다. 다섯째, 본 연구를 통해 규명된 증강현실 매체 특성과 지식의 특성 간의 최적의 결합을 가져올 수 있는 모형에 대한 연구가 필요하다. 여섯째, 증강현실 매체 특성에 대한 정확한 이해를 기반으로 학습자의 인지 과정을 분석하고, 단순한 지식의 전달매체로서가 아닌 학습경험을 디자인하는 매체로서 증강현실을 효과적으로 설계하기 위한 방안에 대한 연구가 필요하다. 일곱째, 행위유발성(affordance)의 문제를 보다 개선하여 증강현실의 실물조작을 통한 상호작용적 특성을 극대화할 수 있는 보다 진전된 기술 개발이 필요하다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 교육공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE