View : 625 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor최진호-
dc.contributor.author민지현-
dc.creator민지현-
dc.date.accessioned2016-08-25T04:08:16Z-
dc.date.available2016-08-25T04:08:16Z-
dc.date.issued2009-
dc.identifier.otherOAK-000000051124-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/177564-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000051124-
dc.description.abstract파클리탁셀은 유방암, 자궁암, 결장암, 비소세포성 폐암 등 여러 암에 대한 높은 항암효과와 내성문제의 해결 측면에서 최근에 발견된 가장 획기적인 항암제이다. 그러나 탁솔은 수용액에 대한 용해도가 낮아 탁솔 주사 시 50%의 에탄올과 50%의 Cremophor EL (polyoxyethylated castor oil)을 섞은 부형제에 포집 시켜야 한다. 그런데 부형제로 쓰이는 Cremophor EL은 호흡곤란, 흉통, 빈맥, 부정맥, 저혈압 등의 심각한 부작용을 유발한다. 최근에 본 연구진은 생분해성을 띠며 온도에도 감응하고 자가 조립하여 마이셀을형성하는 양친매성 폴리포스파젠에 대한 보고를 하였다. 이러한 포스파젠의 성질은 마이셀안에 파클리탁셀을 물리적으로 로딩시키거나 올리고 펩타이드의 곁가지에 파클리탁셀을 화학적 결합을 시킴으로써 얻을 수 있음을 확인하였다. 효능은 입증되었으나 물에 잘 녹지 않는 파클리탁셀을 이용해 포스파젠 유도체의 α-amine에 2’-succinyl paclitaxle을 컨쥬게이션켜 최종 합성시킨 싸이클로트라이포스파젠-파클리탁셀 컨쥬게이트는 수용액 상에서 자가 조립하여 마이셀을 형성하며 그 크기가 38.2 nm정도 되며 임계 마이셀 농도(CMC)가 체내에 주사하기 적당한 10 mg/L 임을 확인했다. 또 파클리탁셀 컨쥬게이트는 기존 프리 파클리탁셀에 비해 in vitro상에서의 세포독성 실험에서 예상대로 낮은 값을 보였다. 폴리포스파젠-파클리탁셀 컨쥬게이트 또한 폴리포스파젠 유도체의 α-amine에 2’-succinyl paclitaxel을 컨쥬게이션시켜 합성하였다. 이것 또한 수용액 상에서 자가 조립하여 마이셀을 형성하며 치환체의 분자량에 따라 마이셀의 크기가 10~20 nm정도 되며 임계 마이셀 농도(CMC)가 40~50 mg/L 임을 확인했다. 나노 크기의 50,000~70,000의 분자량을 갖는 폴리포스파젠-파클리탁셀 컨쥬게이트는 enhanced permeability and retention (EPR)효과에 의한 암 선택성을 가지고 있다. 이는 조직 내 분포 실험(biodistribution)을 통해 실험 시작 후 24시간 뒤에 일반조직에 대한 암 조직의 선택성 tumor to tissue ratio (TTR)의 값이 3.49임을 통해 확인할 수 있었다.;Paclitaxel is one of the most important antitumor agents currently in clinical use, since it exhibits effective antitumor activity against various cancers, such as breast, ovarian, and non-small cell lung cancers. However, its clinical applications are limited due to its extremely low water solubility (< 1 μg/ml)3 and serious side effects including hypersensitivity and neurotoxicity attributed to its formulating agent, Cremophore EL. Therefore, a great deal of efforts has been made to overcome such problems. Recently, we have reported a new type of thermoresponsive micelles self-assembled from amphiphilic phosphazenes grafted with hydrophilic poly(ethylene glycol) and hydrophobic oligopeptide. We have found that these phosphazene are useful for solubilization of paclitaxel by either physical micellar encapsulation or chemical conjugation to the oligopeptide side group of the phosphazene. A novel water-soluble and biodegradable cyclotriphosphazene-paclitaxel conjugate was prepared by reacting 2’-succinyl paclitaxel with cyclotriphosphazenes bearing equimolar glycyl-L-lysine and methoxy poly(ethylene glycol) as side groups. The macromolecular conjugate was found to self-assemble in aqueous solution to form stable micelles with a mean hydrodynamic diameter of 38.2 nm and a low critical micelle concentration of 10 mg/L. The present conjugate exhibited lower than free paclitaxel but reasonably high in vitro cytotoxicity against selected human tumor cells due to their hydrolytic degradation in PBS solution. The polyphosphazene-paclitaxel conjugate was also prepared by reacting 2’-succinyl paclitaxel with polyphosphazenes bearing glycyl-L-lysine and methoxy poly(ethylene glycol) as side groups. It was found to self-assemble in aqueous solution to form stable micelles with a mean hydrodynamic diameter of 10~20 nm and a low critical micelle concentration of 40~50 mg/L depending on the molecular size. Nanosized polyphosphazene-paclitaxel conjugate with a wide range of molecular weight from 50,000~70,000 were synthesized to study their tumor selectivity by enhanced permeability and retention (EPR) effect. It has been found from biodistribution study that the present polyphosphazene-paclitaxel conjugate exhibit high tumor selectivity by EPR effect with the tumor to tissue ratio (TTR) of 3.49 at 24hr.-
dc.description.tableofcontentsChapter 1 Introduction = 1 1.1. Polymeric drug delivery systems = 2 1.2. Controlled drug release = 3 1.3. Biodegradable polymers = 4 1.4. Polyphosphazene = 6 1.4.1. Introduction = 6 1.4.2. Synthesis = 8 1.4.3. Physical properties = 11 1.4.3.1. Cyclophosphazene의 열개환중합반응 (Ring opening polymerization) = 11 1.4.3.2. 주사슬의 유연성 = 13 1.5. Paclitaxel as an anticancer agent = 15 1.5.1. History of the development of paclitaxel = 15 1.5.2. The mechanism of paclitaxel 's activity = 16 1.5.3. Toxicity and side-effects = 19 1.5.4. Structure activity relationships (SAR) of paclitaxel analogs = 19 1.6. EPR (enhanced permeability and retention) effect = 21 Reference = 23 Chapter 2 Synthesis and Characterization of Cyclotriphosphazene-Paclitaxel Conjugates = 27 2.1 Introduction = 28 2.2. Experimental section = 30 2.2.1. Materials = 30 2.2.2. Instruments = 31 2.2.3. Synthesis and characterization = 31 (가) HCl Gly-CbzLysine methylester의 합성 = 31 (1) Boc-Lys(Z)-OCH₃의 합성 = 31 (2) Lys(Z)-OCH₃의 합성 = 32 (3) BocGlyLys(Z)-OCH₃ 의 합성 = 33 (4) HCl·GlyLys(Z)-OCH₃ 의 합성 = 33 (나) [NP(MPEG550)GlyLysMe]3 의 합성 = 34 (다) 2'-Succinyl paclitaxel = 35 (라) {[NP(MPEG550)(GlyLysMe-2’-succinylpaclitaxel]₁ [NP(MPEG550)(GlyLys Me)]₂} 의 합성 = 36 (마) {[NP(MPEG550)(GlyLysMe-2’succinylpaclitaxel]₁[NP(MPEG550)(GlyLys Me)[NPMPEG550)(GlyLysMe)-Cy5.5]₁} 의 합성 = 37 2.2.4. Micelle size and size distribution = 37 2.2.5. Determination of critical micelle concentration = 37 2.2.6. In vitro cytotoxicity data = 38 2.2.7. In vivo xenograft trials against Hela cell lines = 39 2.2.8. Tissue distribution and tumor accumulation of trimer-paclitaxel conjugate = 39 2.2.9. Non-invasive NIR fluorescence image of trimer-paclitaxel conjugate = 40 2.3. Result and discussion = 41 2.3.1. Synthesis and characterization = 41 2.3.2. Critical micelle concentration (CMC) = 45 2.3.3. Size distribution = 46 2.3.4. In vitro cytotoxicity data = 47 2.3.5. In vivo xenograft experiment = 48 2.3.6. Organ distribution of the trimer-paclitaxel conjugate = 50 2.3.7. Tumor accumulation of the trimer-paclitaxel conjugate = 53 2.4. Conclusions = 55 Reference = 56 Chapter 3 Synthesis and Characterization of Polyphosphazene-Paclitaxel Conjugate = 59 3.1 Introduction = 60 3.2. Experimental Section = 62 3.2.1. Materials = 62 3.2.2. Instruments = 63 3.2.3. Synthesis and characterization = 63 (가) GlyLys(Boc)-OCH₂CH₃ 의 합성 = 63 (1) Z-Lys(Boc)-OCH₂CH₃의 합성 = 64 (2) Lys(Boc)-OCH₂CH₃의 합성 = 64 (3) CbzGlyLys(Boc)-OCH₂CH₃ 의 합성 = 64 (4) GlyLys(Boc)-OCH₂CH₃ 의 합성 = 65 (나) [NP(MPEG550)1.5(GlyLysEt)0.5]n 의 합성 = 66 (다) [NP(MPEG550)1.5(GlyLysEt)0.25 (GlyLysEt-2’-succinylpaclitaxel)0.25]n의 합성 (1) = 67 (라) [NP(MPEG550)1.5(GlyLysEt-2’-succinylpaclitaxel)0.5]n의 합성(2) = 68 (마) [NP(MPEG550)1.5(GlyLysEt)-Cy5.5)0.25(GlyLysEt-2’-succinylpaclitaxel)0.25]n 의 합성 = 69 3.2.4. Micelle size and size distribution = 69 3.2.5. Determination of critical micelle concentration = 69 3.2.6. In vitro degradation of polymer backbone = 70 3.2.7. In vitro cytotoxicity data = 70 3.2.8. Tissue distribution and tumor accumulation of polymer-paclitaxel conjugate = 71 3.2.9. Non-invasive NIR fluorescence image of polymer-paclitaxel conjugate = 71 3.3. Result and discussion = 72 3.3.1. Synthesis and characterization = 72 3.3.2. Critical micelle concentration (CMC) = 75 3.3.3. Size distribution = 77 3.3.4. In vitro degradation of polymer backbone = 79 3.3.5. In vitro cytotoxicity data = 80 3.3.6. Organ distribution of the polymer-paclitaxel conjugate = 81 3.3.7. Tumor accumulation of the polymer-paclitaxel conjugate = 83 3.4. Conclusion = 85 Reference = 86 Abstract = 88-
dc.formatapplication/pdf-
dc.format.extent27110834 bytes-
dc.languagekor-
dc.publisher이화여자대학교 대학원-
dc.titleSynthesis, Characterization and Physicochemical Properties of Paclitaxel-Phosphazene Conjugates-
dc.typeMaster's Thesis-
dc.creator.othernameMin, Jee Hyon-
dc.format.pagexiv, 89 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2009. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE