View : 480 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author오경은-
dc.creator오경은-
dc.date.accessioned2016-08-25T02:08:51Z-
dc.date.available2016-08-25T02:08:51Z-
dc.date.issued2007-
dc.identifier.otherOAK-000000019867-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/173136-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000019867-
dc.description.abstractHigh-valent iron(IV)-oxo 종은 mononuclear nonheme iron 촉매와 그 모방체에 의한 유기 기질의 catalytic oxidation에 있어서 중요한 반응 중간체로 알려져 있다. 최근에 이러한 nonheme iron(IV)-oxo 종이 촉매와 생체 모방의 반응에서 직접적으로 관찰되었다. 예를 들어, high-valent iron(IV)-oxo 종의 중간체는 E. coli taurine(a-ketoglutarate dioxygenase)의 촉매 반응에서의 활성 oxidant로 제시되었다. 생체 모방 연구에서 4배위 N4와 5배위 N5 ligand를 포함하는 mononuclear nonheme iron(IV)-oxo complex를 합성하였고, X-ray crystallography를 포함한 여러 가지 spectroscopic 기술로 그 특성을 연구하였다. Iron(IV)-oxo 종은 alkane hydroxylation, olefin epoxidation, alcohol oxidation, 그리고 sulfide, dihydro-anthracene, PPh3의 oxidation과 같은 여러 가지 반응성을 보인다. 최근에 Golubkov와 Gross 연구단에서는 salen(N,N’-bis(salicylidene) ethylenediamine dianion), porphyrin, 그리고 corrole의 manganese complex 사이에서의 nitrogen atom transfer에 대하여 발표하였고, 이 발표에 앞서 metalloporphyrin(M = Mn, Cr) 반응의 intermetal nitrogen atom transfer가 연구되어 왔으며, 더불어 oxygen atom transfer도 연구되어 왔다. Iron porphyrin의 경우 iron(IV)-oxo와 iron(II) porphyrin의 반응은 m-oxo-bridged iron(III) 형태의 porphyrin dimer를 통하여 atom transfer가 이루어진다. Nonheme iron(IV)-oxo complex에 의한 유기 기질의 산화가 연구되어 왔지만, nonheme iron complex 사이의 inter-metal oxygen atom transfer는 그 동안 연구되지 않았다. 이 논문에서는 iron porphyrin과 비교하여, 여러 가지 nonheme 생체 모방 촉매의 intermediate인 nonheme iron(IV)-oxo complex에서 iron(II) complex로 oxygen atom이 전달되는 과정을 규명하였다. 생체 촉매 모방체인 [FeII(N4Py)]2+, [FeII(Bn-TPEN)]2+, [FeII(TMC)]2+를 사용하여 complex 사이의 oxygen atom transfer의 양상을 살펴본 결과, 각각의 oxidizing power는 [(Bn-TPEN)FeIV=O]2+ > [(N4Py)FeIV=O]2+ > [(TMC)FeIV=O]2+로 관찰되었다. 또한 aromatic 화합물인 anthracene이 mononuclear iron(IV)-oxo에 의해 hydroxylation되는 경로를 연구하였다. Aromatic hydroxylation의 경로를 찾기 위하여 반응성과 electronic effect, 그리고 kinetic isotope effect (KIE)를 관찰하였다 –3.9의 큰 Hammett r 값과 1보다 작은 0.9의 KIE 값을 통하여, iron-oxo 종이 hydrogen atom abstraction 과정이 아닌 p-system의 electrophipic 과정을 통하여 aromatic ring을 공격하며, radical이나 cationic 형태의 s-complex를 거쳐서 진행 됨을 밝혀내었다.;PartⅠ The intermetal transfer of an oxygen atom from nonheme iron(IV)-oxo to iron(II) complexes has been unambiguously evidenced spectrophotometrically, mass spectrometrically, and electrochemically. The transfer of the oxygen atom was found to be dependent on the oxidizing power of the iron(IV)-oxo complexes. Part II The hydroxylation of aromatic compounds by mononuclear nonheme iron(IV)–oxo complexes has been investigated by a combined experimental and theoretical approach. In the experimental work, we have performed kinetic studies of the oxidation of anthracene with nonheme iron(IV)–oxo complexes generated in situ, thereby determining kinetic and thermodynamic parameters, a Hammett ρ value, and a kinetic isotope effect (KIE) value. A large negative Hammett ρvalue of –3.9 and an inverse KIE value of 0.9 indicate that the iron–oxo group attacks the aromatic ring via an electrophilic pathway. By carrying out isotope labeling experiments, the oxygen in oxygenated products was found to derive from the nonheme iron(IV)–oxo species. In the theoretical work, we have conducted density functional theory (DFT) calculations on the hydroxylation of benzene by a nonheme iron(IV)–oxo complex. The calculations show that the reaction proceeds via two-state reactivity patterns on competing triplet and quintet spin states via an initial rate determining electrophilic substitution step. In analogy to heme iron(IV)–oxo catalysts, the ligand is noninnocent and actively participates in the reaction mechanism by reshuttling a proton from the ipso position to the oxo group. Based on the experimental and theoretical results, we have concluded that the aromatic ring oxidation by mononuclear nonheme iron(IV)–oxo complexes does not occur via a hydrogen atom abstraction mechanism but involves an initial electrophilic attack on the π–system of the aromatic ring to produce a tetrahedral radical or cationic σ–complex.-
dc.description.tableofcontentsPartⅠ1 Abstract 2 I. Introduction 3 II. Materials and Methods 5 II-1. Materials 5 II-2. Instrumentation 5 II-3. Reaction Conditions 6 II-3-1. The Oxygen Atom Transfer from Fe(IV)-Oxo to Fe(II) Complexes 6 II-3-2. Labeled Oxygen Experiment 7 III. Results and Discussion 8 III-1. Spectrophotometric Evidence for Oxygen Atom Transfer 8 III-2. Mass Spectrometric Evidence for Oxygen Atom Transfer 11 III-3. Electrochemical Evidence for Oxygen Atom Transfer 13 III-4. Determination of Oxidizing Power Order of Various Catalysts 19 IV. Conclusions 21 V. References 23 Part II 27 Abstract 28 I. Introduction 30 II. Materials and Methods 33 II-1. Materials 33 II-2. Instrumentation 33 II-3. Reaction Conditions 34 II-3-1. Reactions of FeIV=O Intermediates with Aromatic Substrates 34 II-3-2. Product Analysis of Aromatic Hydroxylation 34 III. Results and Discussion 37 III-1. Reactivities of Nonheme Iron(IV)-Oxo Complexes in Aromatic Hydroxylation 37 III-2. The Electronic Effect of Aromatic Hydroxylation 42 III-3. Kinetic Isotope Effects (KIE) 45 III-4. Product Analysis 47 IV. Conclusions 49 V. References 51 국문 초록 57-
dc.formatapplication/pdf-
dc.format.extent857388 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleMechanistic Insights into the Versatile Reactivities of High Valent Nonheme Oxoiron(IV) Complexes-
dc.typeMaster's Thesis-
dc.creator.othernameOh, Kyungeun-
dc.format.pageⅸ, 62 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 나노과학부-
dc.date.awarded2007. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE