View : 275 Download: 51

Quantum transport evidence of isolated topological nodal-line fermions

Title
Quantum transport evidence of isolated topological nodal-line fermions
Authors
Kim, HoilOk, Jong MokCha, SeyeongJang, Bo GyuKwon, Chang IlKohama, YoshimitsuKindo, KoichiCho, Won JoonChoi, Eun SangJo, Youn JungKang, WounShim, Ji HoonKim, Keun SuKim, Jun Sung
Ewha Authors
강원
SCOPUS Author ID
강원scopus
Issue Date
2022
Journal Title
NATURE COMMUNICATIONS
ISSN
2041-1723JCR Link
Citation
NATURE COMMUNICATIONS vol. 13, no. 1
Publisher
NATURE PORTFOLIO
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Anomalous transport responses, dictated by the nontrivial band topology, are the key for application of topological materials to advanced electronics and spintronics. One promising platform is topological nodal-line semimetals due to their rich topology and exotic physical properties. However, their transport signatures have often been masked by the complexity in band crossings or the coexisting topologically trivial states. Here we show that, in slightly hole-doped SrAs3, the single-loop nodal-line states are well-isolated from the trivial states and entirely determine the transport responses. The characteristic torus-shaped Fermi surface and the associated encircling Berry flux of nodal-line fermions are clearly manifested by quantum oscillations of the magnetotransport properties and the quantum interference effect resulting in the two-dimensional behaviors of weak antilocalization. These unique quantum transport signatures make the isolated nodal-line fermions in SrAs3 desirable for novel devices based on their topological charge and spin transport. Clear electronic transport signatures of topological nodal-line semimetals have been lacking due to their complex electronic structure and the presence of topologically trivial states. Kim et al. demonstrate that the quantum transport response in slightly hole-doped SrAs3 is dominated by nodal-line fermions.
DOI
10.1038/s41467-022-34845-x
Appears in Collections:
자연과학대학 > 물리학전공 > Journal papers
Files in This Item:
s41467-022-34845-x.pdf(2.93 MB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE