View : 349 Download: 0

Development of a scanning tunneling microscope for variable temperature electron spin resonance

Title
Development of a scanning tunneling microscope for variable temperature electron spin resonance
Authors
Hwang J.Krylov D.Elbertse R.Yoon S.Ahn T.Oh J.Fang L.Jang W.-J.Cho F.H.Heinrich A.J.Bae Y.
Ewha Authors
Andreas Heinrich배유정
SCOPUS Author ID
Andreas Heinrichscopus; 배유정scopus
Issue Date
2022
Journal Title
Review of Scientific Instruments
ISSN
0034-6748JCR Link
Citation
Review of Scientific Instruments vol. 93, no. 9
Publisher
American Institute of Physics Inc.
Indexed
SCIE; SCOPUS scopus
Document Type
Article
Abstract
Recent advances in improving the spectroscopic energy resolution in scanning tunneling microscopy (STM) have been achieved by integrating electron spin resonance (ESR) with STM. Here, we demonstrate the design and performance of a homebuilt STM capable of ESR at temperatures ranging from 1 to 10 K. The STM is incorporated with a homebuilt Joule-Thomson refrigerator and a two-axis vector magnet. Our STM design allows for the deposition of atoms and molecules directly into the cold STM, eliminating the need to extract the sample for deposition. In addition, we adopt two methods to apply radio-frequency (RF) voltages to the tunnel junction: the early design of wiring to the STM tip directly and a more recent idea to use an RF antenna. Direct comparisons of ESR results measured using the two methods and simulations of electric field distribution around the tunnel junction show that, despite their different designs and capacitive coupling to the tunnel junction, there is no discernible difference in the driving and detection of ESR. Furthermore, at a magnetic field of ∼1.6 T, we observe ESR signals (near 40 GHz) sustained up to 10 K, which is the highest temperature for ESR-STM measurement reported to date, to the best of our knowledge. Although the ESR intensity exponentially decreases with increasing temperature, our ESR-STM system with low noise at the tunnel junction allows us to measure weak ESR signals with intensities of a few fA. Our new design of an ESR-STM system, which is operational in a large frequency and temperature range, can broaden the use of ESR spectroscopy in STM and enable the simple modification of existing STM systems, which will hopefully accelerate a generalized use of ESR-STM. © 2022 Author(s).
DOI
10.1063/5.0096081
Appears in Collections:
자연과학대학 > 물리학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE