View : 322 Download: 0

Molecular sensors producing circularly polarized luminescence responses

Title
Molecular sensors producing circularly polarized luminescence responses
Authors
Jhun B.H.Park S.Y.You Y.
Ewha Authors
유영민
SCOPUS Author ID
유영민scopus
Issue Date
2022
Journal Title
Dyes and Pigments
ISSN
0143-7208JCR Link
Citation
Dyes and Pigments vol. 208
Keywords
Circularly polarized luminescenceElectric transition dipole momentLuminescence dissymmetry factorMagnetic transition dipole momentPhotoluminescenceSensors
Publisher
Elsevier Ltd
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Circularly polarized luminescence (CPL) refers to spontaneous emission with the oscillation axis of the emission's electric dipole rotating either right handedly or left handedly along the propagation axis. CPL provides a unique principle in luminescence visualization of target analytes: both the direction and magnitude of light polarization are sensitive to an asymmetric environment around a luminophore, which enables chirality sensing. In addition, CPL spectra are usually less complex than electric circular dichroism spectra because they emerge only from the lowest excited state. To exploit these benefits, researchers have vigorously developed CPL probes. This minireview provides the basic principles for creating molecular CPL activity, including asymmetric exciton coupling and helical intramolecular charge transfer. Emphasis is placed on molecular design. Analyte interactions can perturb the magnitude, reverse the polarization direction, or shift the peak wavelength of CPL, thereby enabling tractable strategies for creating CPL sensors. This minireview outlines selected examples of CPL sensors for physical stimuli, including changes in external magnetic fields, solvent polarity, and temperature. Probes capable of detecting chemical species, such as protons, metal ions, anions, amino acids, nucleosides and DNA, reactive oxygen species, and humidity, are also highlighted. These examples demonstrate the unique sensing utility of CPL sensors. We hope that this minireview will stimulate future research interest toward developing advanced CPL sensors with applications in bioimaging. © 2022
DOI
10.1016/j.dyepig.2022.110786
Appears in Collections:
공과대학 > 화공신소재공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE