View : 335 Download: 0

Network-based integrated analysis for toxic effects of high-concentration formaldehyde inhalation exposure through the toxicogenomic approach

Title
Network-based integrated analysis for toxic effects of high-concentration formaldehyde inhalation exposure through the toxicogenomic approach
Authors
Kang D.S.Lee N.Shin D.Y.Jang Y.J.Lee S.-H.Lim K.-M.Ahn Y.-S.Lee C.M.Seo Y.R.
Ewha Authors
임경민
SCOPUS Author ID
임경민scopus
Issue Date
2022
Journal Title
Scientific Reports
ISSN
2045-2322JCR Link
Citation
Scientific Reports vol. 12, no. 1
Publisher
Nature Research
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Formaldehyde is a colorless, pungent, highly reactive, and toxic environmental pollutant used in various industries and products. Inhaled formaldehyde is a human and animal carcinogen that causes genotoxicity, such as reactive oxygen species formation and DNA damage. This study aimed to identify the toxic effects of inhaled formaldehyde through an integrated toxicogenomic approach utilizing database information. Microarray datasets (GSE7002 and GSE23179) were collected from the Gene Expression Omnibus database, and differentially expressed genes were identified. The network analyses led to the construction of the respiratory system-related biological network associated with formaldehyde exposure, and six upregulated hub genes (AREG, CXCL2, HMOX1, PLAUR, PTGS2, and TIMP1) were identified. The expression levels of these genes were verified via qRT-PCR in 3D reconstructed human airway tissues exposed to aerosolized formaldehyde. Furthermore, NRARP was newly found as a potential gene associated with the respiratory and carcinogenic effects of formaldehyde by comparison with human in vivo and in vitro formaldehyde-exposure data. This study improves the understanding of the toxic mechanism of formaldehyde and suggests a more applicable analytic pipeline for predicting the toxic effects of inhaled toxicants. © 2022, The Author(s).
DOI
10.1038/s41598-022-09673-0
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE