View : 406 Download: 73

Glutathione is an aging-related metabolic signature in the mouse kidney

Title
Glutathione is an aging-related metabolic signature in the mouse kidney
Authors
Ahn, EunyongLee, JueunHan, JisuLee, Seung-MinKwon, Ki-SunHwang, Geum-Sook
Ewha Authors
황금숙
SCOPUS Author ID
황금숙scopus
Issue Date
2021
Journal Title
AGING-US
ISSN
1945-4589JCR Link
Citation
AGING-US vol. 13, no. 17, pp. 21009 - 21028
Keywords
metabolomicstranscriptomicsrenal agingglutathione metabolism
Publisher
IMPACT JOURNALS LLC
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been limited. In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal glutathione metabolism; pathway and network analyses further revealed the increased expression of immunerelated genes in the aged group. Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system.
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
aging-v13i17-203509.pdf(1.6 MB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE