View : 577 Download: 0

Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study

Title
Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study
Authors
Li X.-X.Xue S.-S.Lu X.Seo M.S.Lee Y.-M.Kim W.-S.Cho K.-B.Nam W.
Ewha Authors
남원우이용민서미숙김원석
SCOPUS Author ID
남원우scopus; 이용민scopusscopusscopus; 서미숙scopus; 김원석scopus
Issue Date
2021
Journal Title
Inorganic Chemistry
ISSN
0020-1669JCR Link
Citation
Inorganic Chemistry vol. 60, no. 6, pp. 4058 - 4067
Publisher
American Chemical Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head"part of the TAML framework; one has a phenyl group at the "Head"part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions. ©
DOI
10.1021/acs.inorgchem.1c00110
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE