View : 471 Download: 0

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

Title
Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil
Authors
Seo, YoonjooCho, Kyung-Suk
Ewha Authors
조경숙
SCOPUS Author ID
조경숙scopus
Issue Date
2021
Journal Title
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY
ISSN
1017-7825JCR Link

1738-8872JCR Link
Citation
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY vol. 31, no. 1, pp. 104 - 114
Keywords
Rhizoremediationpetroleum-contaminated soilchemical nutrientcompostmethane emission
Publisher
KOREAN SOC MICROBIOLOGY &

BIOTECHNOLOGY
Indexed
SCIE; SCOPUS; KCI WOS scopus
Document Type
Article
Abstract
Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas,Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.
DOI
10.4014/jmb.2006.06023
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE