View : 645 Download: 0
Curcumin and hesperetin attenuate d-galactose-induced brain senescence in vitro and in vivo
- Title
- Curcumin and hesperetin attenuate d-galactose-induced brain senescence in vitro and in vivo
- Authors
- Lee J.; Kim Y.S.; Kim E.; Kim Y.
- Ewha Authors
- 김유리
- SCOPUS Author ID
- 김유리
- Issue Date
- 2020
- Journal Title
- Nutrition Research and Practice
- ISSN
- 1976-1457
- Citation
- Nutrition Research and Practice vol. 14, no. 5, pp. 438 - 452
- Keywords
- Aging; Brain; Curcumin; D-galactose; Hesperetin
- Publisher
- Korean Nutrition Society
- Indexed
- SCIE; SCOPUS; KCI
- Document Type
- Article
- Abstract
- BACKGROUND/OBJECTIVES: Brain senescence causes cognitive impairment and neurodegeneration. It has also been demonstrated that curcumin (Cur) and hesperetin (Hes), both antioxidant polyphenolic compounds, mediate anti-aging and neuroprotective effects. Therefore, the objective of this study was to investigate whether Cur, Hes, and/or their combination exert anti-aging effects in D-galactose (Dg)-induced aged neuronal cells and rats. MATERIALS/METHODS: SH-SY5Y cells differentiated in response to retinoic acid were treated with Cur (1 μM), Hes (1 μM), or a combination of both, followed by 300 mM Dg. Neuronal loss was subsequently evaluated by measuring average neurite length and analyzing expression of β-tubulin III, phosphorylated extracellular signal-regulated kinases, and neurofilament heavy polypeptide. Cellular senescence and related proteins, p16 and p21, were also investigated, including their regulation of antioxidant enzymes. In vivo, brain aging was induced by injecting 250 mg/kg body weight (b.w.) Dg. The effects of supplementing this model with 50 mg/kg b.w. Cur, 50 mg/kg b.w. Hes, or a combination of both for 3 months were subsequently evaluated. Brain aging was examined with a step-through passive avoidance test and apoptosis markers were analyzed in brain cortex tissues. RESULTS: Cur, Hes, and their combination improved neuron length and cellular senescence by decreasing the number of β-gal stained cells, down-regulated expression of p16 and p21, and up-regulated expression of antioxidant enzymes, including superoxide dismutase 1, glutathione peroxidase 1, and catalase. Administration of Cur, Hes, or their combination also tended to ameliorate cognitive impairment and suppress apoptosis in the cerebral cortex by down-regulating Bax and poly (ADP-ribose) polymerase expression and increasing Bcl-2 expression. CONCLUSIONS: Cur and Hes appear to attenuate Dg-induced brain aging via regulation of antioxidant enzymes and apoptosis. These results suggest that Cur and Hes may mediate neuroprotective effects in the aging process, and further study of these antioxidant polyphenolic compounds is warranted. © 2020 The Korean Nutrition Society and the Korean Society of Community Nutrition.
- DOI
- 10.4162/nrp.2020.14.5.438
- Appears in Collections:
- 신산업융합대학 > 식품영양학과 > Journal papers
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML