View : 666 Download: 0

Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)-Oxo Complexes in the Absence and Presence of Lewis Acids

Title
Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)-Oxo Complexes in the Absence and Presence of Lewis Acids
Authors
Sharma N.Lee Y.-M.Li X.-X.Nam W.Fukuzumi S.
Ewha Authors
남원우Shunichi Fukuzumi
SCOPUS Author ID
남원우scopus; Shunichi Fukuzumiscopusscopus
Issue Date
2019
Journal Title
Inorganic Chemistry
ISSN
0020-1669JCR Link
Citation
Inorganic Chemistry vol. 58, no. 20, pp. 13761 - 13765
Publisher
American Chemical Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Epoxidation of styrene derivatives, sulfoxidation of thioanisole derivatives, and hydroxylation of toluene derivatives by a nonheme manganese(IV)-oxo complex binding triflic acid, [(N4Py)MnIV(O)]2+-(HOTf)2 [1-(H+)2], and scandium triflate, [(N4Py)MnIV(O)]2+-(Sc(OTf)3)2 [1-(Sc3+)2], occur via outer-sphere electron-transfer (OSET) pathways, exhibiting singly unified driving force dependence, enabling one to predict absolute values of the second-order rate constants of these three types of substrate oxidations by the manganese(IV)-oxo complex, using the Marcus theory of electron transfer. When [(N4Py)MnIV(O)]2+ (1) was replaced by [(N4Py)FeIV(O)]2+ (2), OSET pathways were changed to inner-sphere electron-transfer (ISET) pathways. The difference in the OSET versus ISET pathways is clarified based on the difference in the Lewis basicity of the oxo moieties in 1 and 2. Copyright © 2019 American Chemical Society.
DOI
10.1021/acs.inorgchem.9b02403
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE