View : 584 Download: 0

Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst

Title
Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst
Authors
Son S.Lee J.M.Kim S.-J.Kim H.Jin X.Wang K.K.Kim M.Hwang J.W.Choi W.Kim Y.-R.Hwang S.-J.
Ewha Authors
황성주
SCOPUS Author ID
황성주scopus
Issue Date
2019
Journal Title
Applied Catalysis B: Environmental
ISSN
0926-3373JCR Link
Citation
Applied Catalysis B: Environmental vol. 257
Keywords
Conductive nanosheetHybridizationHydrophilic surface natureInterfacial electronic couplingVisible light-active photocatalysts
Publisher
Elsevier B.V.
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Hybridization with conductive 2D nanosheets (NSs) attracts plenty of research activities because of its effectiveness for improving the photocatalyst performance of diverse semiconductors. Here, versatile roles of conductive NSs in hybrid-type photocatalysts are systematically investigated with three representative conductive 2D NSs to synthesize highly efficient visible light-active photocatalysts. Among several conductive NS-based nanohybrids, the RuO2 NS-based nanohybrid exhibits the highest photocatalytic activities. Based on systematic spectroscopic analyses, polar RuO2 NS appears to be more effective as electron reservoir, photosensitizer, cocatalyst and charge carrier pathway in hybrid-type photocatalyst than MoS2 and graphene NSs. The high efficiency of RuO2 NS as hybridization matrix is attributable to the high surface hydrophilicity, high surface bond polarity, and enhanced interfacial electronic coupling of this hydrophilic NS with semiconductor. The present study underscores that hydrophilic conductive metal oxide NS can act as the most efficient hybridization matrix for exploring high-performance photocatalysts with strong interfacial electronic coupling. © 2019 Elsevier B.V.
DOI
10.1016/j.apcatb.2019.117875
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE