View : 682 Download: 0

Toward an Effective Control of the H2 to CO Ratio of Syngas through CO2 Electroreduction over Immobilized Gold Nanoparticles on Layered Titanate Nanosheets

Title
Toward an Effective Control of the H2 to CO Ratio of Syngas through CO2 Electroreduction over Immobilized Gold Nanoparticles on Layered Titanate Nanosheets
Authors
Marques Mota F.Nguyen D.L.T.Lee J.-E.Piao H.Choy J.-H.Hwang Y.J.Kim D.H.
Ewha Authors
김동하Filipe Marques Mota
SCOPUS Author ID
김동하scopus; Filipe Marques Motascopusscopus
Issue Date
2018
Journal Title
ACS Catalysis
ISSN
2155-5435JCR Link
Citation
ACS Catalysis vol. 8, no. 5, pp. 4364 - 4374
Keywords
Au catalystCO productionCO2 reduction reactionelectrocatalysissyngas conversiontitanate nanosheets
Publisher
American Chemical Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
In recent years, the electroreduction of CO2 to valuable products has emerged as a rational answer to rising CO2 emissions and a strategic approach to incorporate renewable electricity from intermittent sources (e.g., wind and solar) into the global energy supply. The reduction of CO2 to CO has been highlighted in the widely explored industrial conversion of syngas (CO and H2) to fuels. Herein, we report a promising electrocatalyst incorporating well-dispersed gold nanoparticles (Au NPs) on ultrathin titanate nanosheets (TiNS). By tuning the contents of Au (in the ranges of 0 to 93 wt % Au) in the hybrid Au/TiNS architecture, CO product selectivity was effectively controlled (in the range of CO Faradaic efficiency from 3 to over 80%) with the sole additional formation of H2, which is of pronounced industrial interest. Most importantly, a control of both component amounts was suggested to result in a variation of corresponding electronic properties based on the interaction between Au NP and TiNS substrate, dictating the stabilization of formed reaction intermediates and resulting product selectivity. In addition, our Au/TiNS achieved optimally high CO and H2 production current densities, with 73 wt % Au at the low cathodic potential region (-0.6 to -0.9 VRHE). The suggested synergetic effect between both catalytic components underlines the promising character of this hybrid system and is expected to significantly add to the strategic production of syngas for subsequent applications. © 2018 American Chemical Society.
DOI
10.1021/acscatal.8b00647
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE