View : 682 Download: 0

Enhanced Chemical Reactivity of Graphene by Fermi Level Modulation

Title
Enhanced Chemical Reactivity of Graphene by Fermi Level Modulation
Authors
Park, Myung JinChoi, Hae-HyunPark, BaekwonLee, Jae YoonLee, Chul-HoChoi, Yong SeokKim, YoungsooYoo, Je MinLee, HyukjinHong, Byung Hee
Ewha Authors
이혁진
SCOPUS Author ID
이혁진scopus
Issue Date
2018
Journal Title
CHEMISTRY OF MATERIALS
ISSN
0897-4756JCR Link

1520-5002JCR Link
Citation
CHEMISTRY OF MATERIALS vol. 30, no. 16, pp. 5602 - 5609
Publisher
AMER CHEMICAL SOC
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Among various approaches to modify the electronic and chemical properties of graphene, functionalization is one of the most facile ways to tailor these properties. The rearranged structure with covalently bonded diazonium molecules exhibits distinct semiconducting property, and the attached diazonium enables subsequent chemical reactions. Notably, the rate of diazonium functionalization depends on the substrate and the presence of strain. Meanwhile, according to the Gerischer-Marcus theory, this reactivity can be further tuned by adjusting the Fermi level. Here, we precisely controlled the Fermi level of graphene by introducing the self-assembled monolayer (SAM) and investigated the degree of chemical reactivity of graphene with respect to the doping types. The n-doped graphene exhibited the highest reactivity not only for diazonium molecules but also for metal ions. The increased reactivity is originated from a remarkable electron donor effect over the entire area. In addition, the n-doped graphene enabled spatially patterned functionalization of diazonium molecules, which was further utilized as a growth template for gold particles that would be advantageous for enhanced electrochemical reactivity.
DOI
10.1021/acs.chemmater.8b01614
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE