View : 639 Download: 0

Understanding G protein-coupled receptor allostery via molecular dynamics simulations: Implications for drug discovery

Title
Understanding G protein-coupled receptor allostery via molecular dynamics simulations: Implications for drug discovery
Authors
Basith S.Lee Y.Choi S.
Ewha Authors
최선이윤지
SCOPUS Author ID
최선scopus; 이윤지scopus
Issue Date
2018
Journal Title
Methods in Molecular Biology
ISSN
1064-3745JCR Link
Citation
Methods in Molecular Biology vol. 1762, pp. 455 - 472
Keywords
AllosteryG protein-coupled receptorHotspotsMolecular dynamics simulationNetwork modelStructural ensembles
Publisher
Humana Press Inc.
Indexed
SCOPUS scopus
Document Type
Book Chapter
Abstract
Unraveling the mystery of protein allostery has been one of the greatest challenges in both structural and computational biology. However, recent advances in computational methods, particularly molecular dynamics (MD) simulations, have led to its utility as a powerful and popular tool for the study of protein allostery. By capturing the motions of a protein’s constituent atoms, simulations can enable the discovery of allosteric hot spots and the determination of the mechanistic basis for allostery. These structural and dynamic studies can provide a foundation for a wide range of applications, including rational drug design and protein engineering. In our laboratory, the use of MD simulations and network analysis assisted in the elucidation of the allosteric hotspots and intracellular signal transduction of G protein-coupled receptors (GPCRs), primarily on one of the adenosine receptor subtypes, A2A adenosine receptor (A2AAR). In this chapter, we describe a method for calculating the map of allosteric signal flow in different GPCR conformational states and illustrate how these concepts have been utilized in understanding the mechanism of GPCR allostery. These structural studies will provide valuable insights into the allosteric and orthosteric modulations that would be of great help to design novel drugs targeting GPCRs in pathological states. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
DOI
10.1007/978-1-4939-7756-7_23
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE