View : 733 Download: 0

A facile growth process of CeO2-Co3O4 composite nanotubes and its catalytic stability for CO oxidation

Title
A facile growth process of CeO2-Co3O4 composite nanotubes and its catalytic stability for CO oxidation
Authors
Oh H.Kim I.H.Lee N.-S.Kim Y.D.Kim M.H.
Ewha Authors
김명화
SCOPUS Author ID
김명화scopus
Issue Date
2017
Journal Title
Materials Research Express
ISSN
2053-1591JCR Link
Citation
Materials Research Express vol. 4, no. 8
Keywords
Cerium oxideCO oxidationCobalt oxideElectrospinningHeterogeneous catalystNanotube
Publisher
Institute of Physics Publishing
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Hybrid cerium dioxide (CeO2)-cobalt oxide (Co3O4) composite nanotubes were successfully prepared by a combination of electrospinning and thermal annealing using CeO2 and Co3O4 precursors for the first time. Electrospun CeO2-Co3O4 composite nanotubes represent relatively porous surface texture with small dimensions between 80 and 150 nm in the outer diameter. The microscopic investigations indicate that the nanoparticle like crystalline structures of CeO2 and Co3O4 are homogenously distributed and continuously connected to form the shape of nanotube in the length of a few micrometers during thermal annealing. It is expected that the different evaporation behaviors of solvents and matrix polymer between the core and the shell in as-spun nanofibers in the course of thermal annealing could be reasonably responsible for the formation of well-defined CeO2/Co3O4 hybrid nanotubes. Additionally, the general catalytic activities of electrospun CeO2/Co3O4 hybrid nanotubes toward the oxidation of carbon monoxide (CO) were carefully examined by a continuous flow system, resulting in favorable catalytic activity as well as catalytic stability for CO oxidation between 150 °C and 200 °C without the deactivation of the catalyst with time stems from accumulation of reaction intermediates such as carbonate species. © 2017 IOP Publishing Ltd.
DOI
10.1088/2053-1591/aa84c7
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE