View : 814 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor윤주영-
dc.contributor.authorHU, YING-
dc.creatorHU, YING-
dc.date.accessioned2017-08-27T12:08:29Z-
dc.date.available2017-08-27T12:08:29Z-
dc.date.issued2017-
dc.identifier.otherOAK-000000143353-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000143353en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/236521-
dc.description.abstract1장에서는 형광의 원리에 대해 간단히 설명하였다. 2 장에서 피렌 (pyrene)이 널리 사용되는 형광 출력 그룹이기 때문에 여러 가지bis-pyrene유도체가 화학 센서로 합성되었다. 첫째, 두 개의 Zn2+ 선택 형광 프로브는 에테르 (ether)(프로브 1) 또는 티오 에테르 (thiother) 링커 (프로브 2)를 통해 두 개의 피렌 모이어 티를 연결하여 개발되었습니다. 내부 전하 이동 (ICT) 피크는 Zn2+ 와의 반응에 의해 생성 된 페놀 레이트 (phenolate) 그룹에 의해 유도 될 수 있으며, 이는 550 nm에서 선택적 on-off 방출 피크를 유발할 수있다. 그들의 발광 스펙트럼의Bathochromic 변화 관측된다. 또한, 프로브 1과 2는 apoptosis 동안 방출 된 유리 Zn2+ 이온뿐만 아니라 이미징 외인성 Zn2+ 이온에 성공적으로 적용되었습니다. 둘째, 새로운 bis-pyrene 그룹을 포함한 유도체 프로브 3 를 합성하였다. Probe 3는 7.4의 생리적 pH에서 Cu2+로 극적인 형광 퀀칭을 보였다. 또한, 앙상블 3-Cu2+ 복합체는 글루타티온 (GSH), 시스테인 (Cys) 및 호모 시스테인 (Hcy)의 첨가시 선택적 off-on 형광 증강을 나타내었다. 해결 된 형광 변화는 리간드의 3-Cu2+ 복합체로부터 Cu2+ 를 치환하기 때문이다. 3-Cu2+ 는 2 광자 현미경 (TPM)을 사용하여 살아있는 세포 및 조직의 내인성 GSH를 검출하는 데 추가로 적용되었습니다. 3 장에서는 2 개의 시아닌 (cyanine) 계 센서가 개발되었다. 첫째, dipicolylamine으로 변형 된 cyanine 센서 4 를 녹색에서 청색으로 독특한 색 변화와 함께 Cu(II) 와 Zn(II) 이온을 검출하기 위해 합성 하였다. 또한, 그 구리 착물은 수성 매질에서 황화물 이온을 검출 할 수있는 능력을 가지므로, 용액이 녹색으로 되돌아 가게된다. 특히, 추가 된 피리딘 (pyridine) 단위로 인해, 센서 4 는 3.5-11.2의 범위에서 pH에 민감합니다. 파란색에서 파란색으로 변합니다. 두 번째로, 매우 선택적 인 근적외선 시아닌 계 프로브 5가 미토콘드리아 (mitochondria) 표적 형광 프로브로 제시되었다. 프로브 5 는 탁월한 pH 민감성 냈습니다. 또한, 프로브의 공 촛점 형광 이미징 성공적으로 생물 학적 응용 프로그램에 대한 가능성을주는 좋은 biocompatibility뿐만 아니라 살아있는 세포에서 mitochondria 높은 특이성을 수행했습니다. 4 장에서는 다양한 포스겐 검출 방법을 연구했다. 첫째, o-phenylenediamine (OPD)과 포스겐 (phosgene) 의 신속하고 효율적이며 선택적 반응을 이용하여 포스겐 센싱을위한 독특한 전략을 고안했다. 형광 물질로서 4-chloro-7-nitrobenzo[c]-[1,2,5]oxadiazole (NBD), 및 로다민 (RB) 부분을 함유 한 2 개의 OPD 기반 포스겐 화학 센서가 준비되었다. 새로운 센서는 OPD 그룹과 포스겐 사이의 벤즈 이미 다 졸론 형성 반응을 통해 작동한다. 이 프로세스는 0.7에서 2.8ppb 범위의 검출 한계와 함께 육안으로 눈에 보이는 색상 변화 및 형광 강도 향상을 촉진합니다. 또한 NBD-OPD 및 RB-OPD-embedded폴리머 섬유는 고체 상태에서도 포스겐에 노출되면 색이 변하고 형광이 변합니다. 포스젠 에 대한 감도를 향상시키기 위해, 탐침 RB-1은 이전 탐침 RB-OPD를 추가로 개량함으로써 쉽게 합성된다. RB-1과 포스겐의 감지 반응은 빠르고 민감하며 2 분 이내에 완료됩니다. 포스겐의 인식은 triphosgene에 의한 ring-opening process 공격으로 밝혀졌다. 특히, RB-OPD와 비교하여, 센서 RB-1는 감지 프로세스 동안 부산물을 발생시키지 않는다. 또한, 센서 RB-1임베디드 나노 섬유는 성공적으로 제조되어 포스겐을 간결하게 검출하는데 사용되었습니다. V 장에서, 새로운 triarylborane 화합물 BPyr-1 를 합성되었다. 이 센서는 HF 가스 에 선택적인 형광를 보인다. 이 시스템은 BPyr-1의 붕소 중심에 불화물 이온의 배위를 이용하여 에너지 전달 경로의 혼란과 뚜렷한 형광 소멸을 유도 한 π 접합을 일으켰다. 또한, 프로브 BPyr-1 코팅 필름을 추가로 적용하여 고유 가스 용량 변화를 검출 하였다. 마지막 장 에서, 아미노산 (amino acid) 의 키랄 인식을 위해 이리듐 (Iridium)(Ⅲ) 착물 Ir-1를 합성되었다. Ir-1은 음이온 및 에틸 나프탈렌 그룹을 키랄 장벽으로 사용하기위한 결합 포켓으로 두 개의 요소 결합 그룹을 가지고있다. t-Boc 아미노산의 첨가는 560 nm에서의 최대 발광으로 현저한 인광 강화를 유도 하였다. 페닐 글리신 (phenylglycine) 과 Ir-1의 KD / KL 값 5.0이 큰 것으로 관찰되었다.;In chapter I, principles of fluorescence were explained briefly. In chapter II, several bis-pyrene derivatives were synthesized as chemosensors since pyrene is a widely used fluorescent output group, especially due to its tunable excimer/monomer emission and exceptionally long fluorescent lifetime. Firstly, two Zn2+ selective fluorescent probes were developed by linked two pyrene moieties through an ether linker (probe 1) or a thioether linker (probe 2). By reaction with Zn2+, internal charge transfer (ICT) peaks can be induced by the produced phenolate group, which can cause selective turn-on emission peak located at 550 nm. Bathochromic shifts of their emission spectrum are also observed upon addition of Zn2+. Moreover, probe 1 and 2 were successfully applied to image exogenous Zn2+ ions as well as free Zn2+ ions released during apoptosis. The result indicated that these two probes can be effective for imaging endogenous zinc for biology studies. Secondly, a novel bis-pyrene derivative 3, in which two hydroxypyrenes are linked via 2,2′- oxidiethanamino linker, was prepared. Probe 3 exhibited dramatically fluorescence quenching with Cu2+ at a physiological pH of 7.4. Furthermore, the ensemble 3-Cu2+ complex displayed selective off-on fluorescence enhancement upon addition of Glutathione (GSH), cysteine (Cys), and homocysteine (Hcy). The revived fluorescence changes were ascribed to the displacement of the ligand for Cu2+ from 3-Cu2+ complex to biothiols. The probe 3-Cu2+ was further applied to detect endogenous GSH in living cells and tissues by using two-photon microscopy (TPM), which provides various advantages, such as low phototoxicity, minimum background emission, and great tissue penetration depths. In chapter III, two cyanine-based sensor were developed since indocyanine green producing fluorescence in the near infrared region (NIR) region (650-900nm), moreover, it can penetrate relatively deeply into the tissues with less interference of tissue auto-fluorescence when applied for bioimaging in vitro and in vivo. Firstly, a dipicolylamine modified heptamethine cyanine chemosensor 4 was synthesized for detecting Cu (II) and Zn (II) ions along with unique color change from green to blue. Moreover, its copper complex had the capability for detecting sulfide ions in an aqueous medium, as a consequence, induced the solution turns back to green color. Especially, owing to the appended pyridine units, chemosensor 4 is also sensitive to pH in the range of 3.5-11.2 with the color changes from blue to yellow. Secondly, a highly selective near-infrared cyanine-based probe 5 was presented as a mitochondria-targeted fluorescent probe for real time monitoring pH in living cells. The designed probe 5 was synthesized by functioned tricarboncyanine with boronic acid. Probe 5 displayed excellent pH sensitivity and anti-interference capability. Moreover, confocal fluorescence imaging of the probe was successfully performed high specificity to mitochondria in living cell as well as good biocompatibility, giving it potential for biological applications. In chapter IV, various phosgene detection methods based fluorescent probes was investigated. Firstly, a unique strategy for phosgene sensing was devised by taking advantage of the rapid, efficient, and selective reaction of the o-phenylenediamine (OPD) group with phosgene. Two OPD-based phosgene chemosensors that contain 4-chloro-7-nitrobenzo[c]-[1,2,5]oxadiazole (NBD), and rhodamine (RB) moieties as fluorophores were prepared. The new sensors operate through a benzimidazolone forming reaction between OPD groups and phosgene. These processes promote either naked eye visible color changes and/or fluorescence intensity enhancements in conjunction with detection limits that range from 0.7 to 2.8 ppb. Furthermore, NBD-OPD and RB-OPD-embedded polymer fibers display distinct color and fluorescence changes upon exposure to phosgene even in the solid state. To improve the sensitivity towards phosgene, probe RB-1 is readily synthesized by further modified the former probe RB-OPD. The sensing reaction of RB-1 to phosgene is rapidly and sensitive and finishes within 2 minute. The recognition of phosgene has been clarified as ring-opening process attack by the triphosgene. Notably, in comparison with the first-generation sensor RB-OPD, the sensor RB-1 generate no byproduct during the sensing process. Furthermore, sensor RB-1 embedded nanofibers were successfully fabricated and used for concise detecting phosgene. In chapter V, a novel triarylborane compound BPyr-1 was described as fluorescent probe for HF gas with high sensitivity and selectivity. This system utilized the coordination of a fluoride ion to the boron center in BPyr-1 caused perturbation in the energy transfer pathway and the π conjugation, which induced distinct fluorescent quenching. In addition, probe BPyr-1-coated film was further applied to detect HF gas undergoes unique capacitance change. In the last chapter VI, a novel phosphorescent chemosensor based on the iridium (III) complex Ir-1 was synthesized for the chiral recognition of amino acids. Complex Ir-1 was bearing two urea-binding groups as binding pocket for anions and ethyl naphthalene groups as chiral barriers. Addition of t-Boc amino acids induced remarkable phosphorescence enhancement with the maximum emission at 560 nm. As large as KD/KL value of 5.0 was observed for iridium complex Ir-1 with phenylglycine.-
dc.description.tableofcontentsChapter I Introduction 1 Chapter I-1. Overview of Introduction 2 Chapter I-2. The Principle of Fluorescence 2 Chapter I-3. Types of sensing Mechanism 4 Chapter I-4. References 14 Chapter II Synthesis and Development of Pyrene-based Colorimetric and Fluorometric Chemosensors 15 Chapter II-A. Pyrene Derivatives as Fluorescent Chemosensors for Zn2+ and Their Applications in Bioimaging 19 II-A-1. Introduction 19 II-A-2. Result and Discussion 20 II-A-3. Conclusion 27 II-A-4. Experimental Section 28 II-A-5. References 30 II-A-6. Appendix 32 Chapter II-B. A Bis-Pyrene-Cu(II) Ensemble to Image Biothiols by Using One-Photon and Two-Photon 40 II-B-1. Introduction 40 II-B-2. Result and Discussion 42 II-B-3. Conclusion 50 II-B-4. Experimental Section 51 II-B-5. References 54 II-B-6. Appendix 57 Chapter III Synthesis and Development of Cyanine-based Colorimetric and Fluorometric Chemosensors 59 Chapter III-A. A Multiresponsive Cyanine-based Colorimetric Chemosensor Containing Dipicolylamine Moieties for Specific Detection of Zn (II) and Cu (II) ionsIII-A-1. Introduction 61 III-A-2. Result and Discussion 63 III-A-3. Conclusion 68 III-A-4. Experimental Section 69 III-A-5. References 71 III-A-6. Appendix 73 Chapter III-B. Mitochondria-Targeted Near-Infrared Fluorescent Probe for Quantitative imaging of pH in Living Cells 75 III-B-1. Introduction 75 III-B-2. Result and Discussion 76 III-B-3. Conclusion 85 III-B-4. Experimental Section 86 III-B-5. References 89 III-B-6. Appendix 91 Chapter IV The development of Colorimetric and Fluorometric Chemosensors for detection of Phosgene 94 Chapter IV-A. Effective Strategy for Colorimetric and Fluorescence Sensing of Phosgene Based on Small Organic Dyes and Nanofiber Platforms 95 IV-A-1. Introduction 95 IV-A-2. Result and Discussion 97 IV-A-3. Conclusion 105 IV-A-4. Experimental Section 106 IV-A-5. References 108 IV-A-6. Appendix 110 Chapter IV-B. A Fluorescent and Colorimetric Probe for Detection of Phosgene via Rhodamine-Ring-Opening Assisted Reaction 114 IV-B-1. Introduction 114 IV-B-2. Result and Discussion 116 IV-B-3. Conclusion 123 IV-B-4. Experimental Section 124 IV-B-5. References 126 IV-B-6. Appendix 128 Chapter V Selective Fluorometric Detection of HF by A Chemosensor Containing Boron and Pyridine Moieties 133 V-1. Introduction 134 V-2. Result and Discussion 135 V-3. Conclusion 144 V-4. Experimental Section 145 V-5. References 147 V-6. Appendix 150 Chapter VI Iridium Complex Bearing Urea Groups as a Phosphorescent Chemosensor for Chiral Anion Recognition 154 VI-1. Introduction 155 VI-2. Result and Discussion 156 VI-3. Conclusion 161 VI-4. Experimental Section 162 VI-5. References 164 VI-6. Appendix 166 국문 초록 171 Acknowledgement 174-
dc.formatapplication/pdf-
dc.format.extent9723732 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleDesign, Synthesis and Application of Multifunctional Chemosensors-
dc.typeDoctoral Thesis-
dc.format.pagexviii, 175 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2017. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE