View : 1518 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor박진병-
dc.contributor.author송지원-
dc.creator송지원-
dc.date.accessioned2017-03-24T01:03:53Z-
dc.date.available2017-03-24T01:03:53Z-
dc.date.issued2016-
dc.identifier.otherOAK-000000122441-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/234815-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000122441-
dc.description.abstractMedium chain ω-hydroxycarboxylic acids, ω-aminocarboxylic acids, and α,ω-dicarboxylic acids are widely used for the preparation of various chemical products such as polyamides and polyesters, fragrances, and antimicrobial agents. Thereby, the study has focused on the biosynthesis of the medium chain carboxylic acids from renewable long chain fatty acids by using recombinant Escherichia coli-based biocatalysts. First, ω-hydroxy carboxylic acids were produced from plant-originated fatty acids (e.g., ricinoleic acid) via multi-step enzymatic reactions by an alcohol dehydrogenase (ADH) from Micrococcus luteus NCTC2665, a Baeyer-Villiger monooxygenases (BVMO) from Pseudomonas putida KT2440 or P. fluorescens DSM50106, and an esterase from P. fluorescens SIK WI. The biocatalytic cascade reactions allowed to produce ω-hydroxycarboxylic acids with various chain lengths of C9, C11, and C13 and n-carboxylic acids with chain lengths of C7 and C9 from ricinoleic acid, lesquerolic acid, oleic acid, and linoleic acid. ω-Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via the multistep enzymatic reactions described above, were then oxidized to α,ω-dicarboxylic acids by the alcohol dehydrogenase (AlkJ) from P. putida GPo1 or converted into ω-aminocarboxylic acids by a serial combination of AlkJ from P. putida GPo1 and an ω-transaminase of Silicibacter pomeroyi. Interestingly, the double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli-native enzymes during the biotransformations. These results indicated that the industrially relevant building blocks (C9 to C13 saturated α,ω-dicarboxylic acids and ω-aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis. With an aim to reach high biotransformation productivity, functional expression of the cascade enzymes in recombinant E. coli was investigated. In specific, 3’-untranslated region (3’-UTR) was engineered to increase soluble expression of the BVMOs, which had been mostly expressed in an insoluble form. 3’UTR engineering has been focused on decrease of stability of translationally active mRNAs to reduce translation rates and thereby to lower protein expression level in E. coli BL21 (DE3). Insertion of the gene fragments containing putative RNase E recognition sites into the 3’UTR of the BVMO genes led to reduction of the corresponding mRNA level in E. coli BL21(DE3). However, the amount of BVMOs in soluble fraction was remarkably enhanced resulting in a significant increase of in vivo catalytic activity. The increase of whole-cell biocatalytic activity notably correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3’UTR. Thereby, it was assumed that 3’UTR engineering can be used to improve soluble expression of heterologous enzymes in E. coli as well as to fine-tune the enzyme activity in microbial cells. This study will contribute to development of a new environmentally friendly biocatalytic process for the production of carboxyl synthons, such as medium-chain ω-hydroxy carboxylic acids, α,ω-dicarboxylic acids and ω-aminocarboxylic acids. ;중쇄 오메가 하이드록시카르복실산, 알파, 오메가 디카르복실산, 오메가 아미노카르복실산과 같은 중쇄 카르복실산은 폴리아미드-6,10, -6,12 등의 엔지니어링 플라스틱이나 유화제, 동결방지제, 부식방지제 생산에 사용이 가능하며 또한, 식품이나 화장품에서 항균 소재로 이용되고 있다. 따라서, 본 연구에서는 재조합 Escherichia coli 기반 생촉매를 이용한 생물전환을 통해 장쇄 지방산으로부터 중쇄 카르복실산 생산에 관한 연구를 진행하였다. 연구 2에서는 중쇄 카르복실산 생산을 위해 alcohol dehydrogenase (ADH), Baeyer-Villiger monooxygenases (BVMO), esterase로 이루어진 새로운 생합성 경로를 디자인하였으며, 선행연구 탐색을 통해 각 단계에 적용 가능한 효소로 Micrococcus luteus NCTC2665 유래 ADH, Pseudomonas putida KT2440 또는 P. fluorescens DSM50106 유래 BVMO, P. fluorescens SIK WI 유래 esterase를 선정하였다. 선정된 효소들은 Escherichia. coli에 도입하여 생촉매를 구축하였으며, 이를 이용하여 생물전환을 진행한 결과, ricinoleic acid, lesquerolic acid, oleic acid, linoleic acid와 같은 장쇄 지방산으로부터 다양한 탄소 수를 갖는 중쇄 카르복실산 생산이 가능하다는 것을 확인하였다. 연구 3에서는 연구 2에서 구축된 생합성 경로에 효소를 추가적으로 도입하여 확장함으로써 생산 가능한 카르복실산의 범위를 넓히고자 하였다. 기존의 생합성 경로를 통해 생산된 오메가 하이드록시카르복실산은 연쇄적인 alcohol dehydrogenase의 단독 반응 또는 alcohol dehydrogenase와 ω-transaminase의 복합 반응을 통해, 각각 알파, 오메가 디카르복실산 또는 오메가 아미노카르복실산으로 전환이 가능하다. 이 때 추가 도입한 효소는 선행연구 탐색을 통해 P. putida GPo1 유래 ADH인 AlkJ와 Silicibacter pomeroyi 유래 ω-transaminase로 선정하였다. 불포화 지방산인 ricinoleic acid 또는 lesquerolic acid으로부터 생산되어 이중결합을 포함하는 카르복실산의 경우, 환원된 형태로 생산되는데 이는 생물전환이 진행되는 동안 E. coli 유래 효소에 의한 것으로 판단된다. 이러한 결과는 구축된 생합성 경로의 확장을 통해 더욱 다양한 중쇄 카르복실산 생산이 가능하다는 것을 보여준다. 연구 4에서는 구축된 생합성 경로를 도입한 생촉매의 생산성을 높이기 위해, E. coli 내에서 3’UTR engineering을 통한 효소의 수용성 발현 향상에 대한 연구를 진행하였다. 앞서 구축된 생합성 경로에 포함되는 효소 중 BVMO는 E. coli 내에서 대부분 활성을 갖지 않은 불용성 형태로 생산되어, 이를 개선하기 위해 3’UTR engineering을 진행하였다. BVMO의 3’UTR에 다수의 잠재적 RNase E 절단 부위를 갖는 특정 서열을 도입시킨 결과, BVMO의 mRNA 발현 수준 감소에 의해 전체적인 단백질 발현 수준은 감소하지만, 수용성 발현은 향상되어 결과적으로 전세포 촉매의 효소활성이 증가하는 결과를 나타냈다. 이때 효소 활성의 증가 정도는 3’UTR 내 잠재적 RNase E 절단 부위의 개수와 높은 상관 관계를 보였다. 따라서, 3’UTR engineering은 E. coli 에서 외래 유전자 발현 시, 수용성 발현을 향상시키고, 미생물 내에서 효소활성을 최적으로 조절하는데 이용될 수 있을 것으로 기대된다. 이러한 연구들은 장쇄 지방산으로부터 오메가 하이드록시카르복실산, 알파, 오메가 디카르복실산, 오메가 아미노카르복실산과 같은 중쇄카르복실산의 친환경적 생산공정을 개발하는데 기여할 것으로 생각되며, 향후 산업화를 위해 E. coli 내에서 효소들의 발현 최적화나, 중쇄 카르복실산에 대한 내성 균주 개발 등 고수율 생산에 대한 연구가 후속되어야 할 것으로 생각된다.-
dc.description.tableofcontentsCHAPTER I. INTRODUCTION 1 A. Fatty acids in oils and fats as renewable materials 1 B. Medium-chain functional carboxylic acids 3 1. Chemical process for the production of medium chain carboxylic acids 4 2. Biocatalytic process for the production of medium chain carboxylic acids 4 C. Multistep biotransformation pathway design for the production of medium chain carboxylic acids from fatty acids 5 1. The selection of target compound 6 2. Design of synthetic multistep pathway 6 D. Soluble expression of recombinant proteins in E. coli 10 1. Reducing the rate of protein synthesis 11 2. Co-expression of chaperones and/or foldases 12 3. Periplasmic expression 12 4. Addition of fusion partner 13 E. Research objective 13 References 16 CHAPTER II. Multistep enzymatic synthesis of functional medium-chain carboxylic acids from renewable fatty acids 27 ABSTRACT 27 A. INTRODUCTION 29 B. MATERIALS & METHODS 31 1. Microbial strains and culture media 31 2. Reagent 31 3. Purification of carboxyl products 31 4. Gene cloning 32 5. Whole cell biotransformation assay 35 6. Product analysis by GC-MS 35 7. Identification of the biotransformation products 36 8. Isolation of the biotransformation products 37 9. Quantification of the biotransformation products 37 C. RESULTS & DISCUSSION 38 1. Construction of an oxidative cleavage pathway of fatty acids 38 2. Extension of the pathway via adopting hydratases and BVMOs 48 D. CONCLUSION 61 E. ACKNOWLEDGEMENT 62 REFERENCES 63 CHAPTER III. Microbial synthesis of medium chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long chain fatty acids 67 ABSTRACT 67 A. INTRODUCTION 69 B. MATERIALS & METHODS 72 1. Microbial strains and culture media 72 2. Reagent 74 3. Gene cloning 74 4. Whole cell biotransformation assay 74 5. Product analysis by GC-MS 75 6. Identification of the biotransformation products 76 7. Isolation of the biotransformation products 77 C. RESULTS 79 1. Extension of the pathway via AlkJ and ω-transaminases 79 2. Biosynthesis of α,ω-dicarboxylic acids 79 3. Biosynthesis of ω-aminocarboxylic acids 87 D. CONCLUSION 101 REFERENCES 102 CHAPTER IV. 3'-UTR engineering for soluble expression and fine-tuning of activity of the catalytic enzymes involved in multi-step whole-cell biocatalysis 106 ABSTRACT 106 A. INTRODUCTION 108 B. MATERIALS & METHODS 110 1. Microbial strains and culture media 110 2. Gene cloning 110 3. RNA extraction and reverse transcription PCR 114 4. Sodium Dodecyl Sulfate-polyacrylamide gel electrophoresis and Western blot analysis 116 5. Whole cell biotransformations 116 6. Product analysis by GC-MS 117 C. RESULTS 119 1. Whole-cell biotransformation of ricinoleic acid by E. coli expressing ADH and BmoF1 119 2. Effect of S. enterica 3UTRhilD on expression of bmof1and biotransformation activity 122 3. Effect of 3UTRCAT on stability of the bmof1 mRNA 128 4. Effect of 3UTRCAT on biotransformation activity 131 5. Correlation of number of RNase E sites and biotransformation activity 133 6. 3UTR engineering for soluble expression of a BVMO from R. jostii 139 D. DISCUSSION 142 E. CONCLUSION 145 REFERENCES 146 CHAPTER V. CONCLUSION 153 Abstract in Korean (국문초록) 155-
dc.formatapplication/pdf-
dc.format.extent2499483 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleMicrobial Synthesis of ω-Hydroxycarboxylic, ω-Aminocarboxylic, and α,ω-Dicarboxylic Acids from Renewable Fatty Acids-
dc.typeDoctoral Thesis-
dc.title.subtitlePathway Design and Biocatalyst Engineering-
dc.format.pagexvii, 157 p.-
dc.description.localremark박040-
dc.contributor.examiner이진규-
dc.contributor.examiner박진병-
dc.contributor.examiner서진호-
dc.contributor.examiner최민호-
dc.contributor.examiner홍국기-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 식품공학과-
dc.date.awarded2016. 2-
Appears in Collections:
일반대학원 > 식품공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE