View : 654 Download: 0

A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis

Title
A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis
Authors
Nam S.-W.Noort D.V.Yang Y.Park S.
Ewha Authors
박성수남성원
SCOPUS Author ID
박성수scopusscopus
Issue Date
2007
Journal Title
Lab on a Chip - Miniaturisation for Chemistry and Biology
ISSN
1473-0197JCR Link
Citation
Lab on a Chip - Miniaturisation for Chemistry and Biology vol. 7, no. 5, pp. 638 - 640
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
In this study, we introduce a microfluidic device equipped with pneumatically actuated valves, generating a linear gradient of chemoeffectors to quantify the chemotactic response of Tetrahymena pyriformis, a freshwater ciliate. The microfluidic device was fabricated from an elastomer, poly(dimethylsiloxane) (PDMS), using multi-layer soft lithography. The components of the device include electronically controlled pneumatic microvalves, microchannels and microchambers. The linear gradient of the chemoeffectors was established by releasing a chemical from a ciliate-free microchamber into a microchamber containing the ciliate. The ciliate showed chemotactic behaviours by either swimming toward or avoiding the gradient. By counting the number of ciliates residing in each microchamber, we obtained a precise time-response curve. The ciliates in the microfluidic device were sensitive enough to be attracted to 10 pmol glycine-proline, which indicates a 105 increase in the ciliate's known sensitivity. With the use of blockers, such as dl-2-amino-5-phosphonopentanoic acid (APPA) or lanthanum chloride (LaCl3), we have demonstrated that the NMDA (N-methyl-d-aspartate) receptor plays a critical role in the perception of chemoeffectors, whereas the Ca2+ channel is related to the motility of the ciliate. These results demonstrate that our microfluidic chemotaxis assay system is useful not only for the study of ciliate chemotaxis but also for a better understanding of the signal transduction mechanism on their receptors. © The Royal Society of Chemistry.
DOI
10.1039/b617357h
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE