View : 645 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author엄익환-
dc.date.accessioned2017-01-05T02:01:07Z-
dc.date.available2017-01-05T02:01:07Z-
dc.date.issued2008-
dc.identifier.issn0022-3263-
dc.identifier.otherOAK-4568-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/233625-
dc.description.abstract(Chemical Equation Presented) We report on the ethanolysis of the P=O and P=S compounds ethyl and methyl paraoxon (1a and 1b) and ethyl and methyl parathion (2a and 2b). Plots of spectrophotometrically measured rate constants, k obsd versus [MOEt], the alkali ethoxide concentration, show distinct upward and downward curvatures, pointing to the importance of ion-pairing phenomena and a differential reactivity of free ions and ion pairs. Three types of reactivity and selectivity patterns have been discerned: (1) For the P=O compounds 1a and 1b, LiOEt > NaOEt > KOEt > EtO -; (2) for the P=S compound 2a, KOEt > EtO - > NaOEt > LiOEt; (3) for P=S, 2b, 18C6-crown-complexed KOEt > KOEt = EtO - > NaOEt > LiOEt. These selectivity patterns are characteristic of both catalysis and inhibition by alkali-metal cations depending on the nature of the electrophilic center, P=O vs P=S, and the metal cation. Ground-state (GS) vs transition-state (TS) stabilization energies shed light on the catalytic and inhibitory tendencies. The unprecedented catalytic behavior of crowned-K + for the reaction of 2b is noteworthy. Modeling reveals an extreme steric interaction for the reaction of 2a with crowned-K +, which is responsible for the absence of catalysis in this system. Overall, P=O exhibits greater reactivity than P=S, increasing from 50- to 60-fold with free EtO - and up to 2000-fold with LiOEt, reflecting an intrinsic P=O vs P=S reactivity difference (thio effect). The origin of reactivity and selectivity differences in these systems is discussed on the basis of competing electrostatic effects and solvational requirements as function of anionic electric field strength and cation size (Eisenman's theory). © 2008 American Chemical Society.-
dc.languageEnglish-
dc.titleAlkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: Ethyl and methyl paraoxon and ethyl and methyl parathion-
dc.typeArticle-
dc.relation.issue3-
dc.relation.volume73-
dc.relation.indexSCI-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage923-
dc.relation.lastpage930-
dc.relation.journaltitleJournal of Organic Chemistry-
dc.identifier.doi10.1021/jo702138h-
dc.identifier.wosidWOS:000252686400016-
dc.identifier.scopusid2-s2.0-38849124935-
dc.author.googleUm I.-H.-
dc.author.googleShin Y.-H.-
dc.author.googleLee S.-E.-
dc.author.googleYang K.-
dc.author.googleBuncel E.-
dc.contributor.scopusid엄익환(7006725706;6506759437)-
dc.date.modifydate20230411105538-
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE