View : 974 Download: 0

A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells

Title
A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells
Authors
Shin M.K.Kim M.-K.Bae Y.-S.Jo I.Lee S.-J.Chung C.-P.Park Y.-J.Min D.S.
Ewha Authors
이승진조인호
SCOPUS Author ID
이승진scopus; 조인호scopusscopus
Issue Date
2008
Journal Title
Cellular Signalling
ISSN
0898-6568JCR Link
Citation
Cellular Signalling vol. 20, no. 4, pp. 613 - 624
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The intracellular signaling events controlling human mesenchymal stem cell (hMSC) differentiation into osteoblasts are poorly understood. Collagen-binding domain is considered an essential component of bone mineralization. In the present study, we investigated the regulatory mechanism of osteoblastic differentiation of hMSC by the peptide with a novel collagen-binding motif derived from osteopontin. The peptide induced influx of extracellular Ca2+ via calcium channels and increased intracellular Ca2+ concentration ([Ca2+]i) independent of both pertussis toxin and phospholipase C, and activated ERK, which was inhibited by Ca2+/calmodulin-dependent protein kinase (CaMKII) antagonist, KN93. The peptide-induced increase of [Ca2+]i is correlated with ERK activation in a various cell types. The peptide stimulated the migration of hMSC but suppressed cell proliferation. Furthermore, the peptide increased the phosphorylation of cAMP-response element-binding protein, leading to a significant increase in the transactivation of cAMP-response element and serum response element. Ultimately, the peptide increased AP-1 transactivation, c-jun expression, and bone mineralization, which are suppressed by KN93. Taken together, these results indicate that the novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/CaMKII/ERK/AP-1 signaling pathway in hMSC, suggesting the potential application in cell therapy for bone regeneration. © 2007 Elsevier Inc. All rights reserved.
DOI
10.1016/j.cellsig.2007.11.012
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE