View : 525 Download: 0

Direct soft-chemical synthesis of chalcogen-doped manganese oxide 1D nanostructures: Influence of chalcogen doping on electrode performance

Title
Direct soft-chemical synthesis of chalcogen-doped manganese oxide 1D nanostructures: Influence of chalcogen doping on electrode performance
Authors
Kim T.W.Park D.H.Lim S.T.Hwang S.-J.Min B.-K.Choy J.-H.
Ewha Authors
최진호황성주
SCOPUS Author ID
최진호scopus; 황성주scopus
Issue Date
2008
Journal Title
Small
ISSN
1613-6810JCR Link
Citation
Small vol. 4, no. 4, pp. 507 - 514
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
We have developed a direct nonhydrothermal route to nanostructured chalcogen-doped manganese oxides; KxMnO2Qy (Q = S, Se, and Te). According to combinative diffraction and microscopic analyses, the S- and Se-doped manganese oxides exhibit ID nanowire-type morphology with layered Δ-MnO2- and α-MnO2-structures, respectively, whereas the Te-doped compound consists of 3D nanospheres that are amorphous according to X-ray diffraction. X-ray absorption and X-ray photoelectron spectroscopy analyses clearly demonstrate that the doped chalcogen ions exist in the form of hexavalent chalcogenate clusters mainly on the sample surface or grain boundary. According to electrochemical and ex situ X-ray absorption spectroscopy investigations, the Se-doped manganate nanowires show higher structural stability and better electrode performance with excellent rate characteristics compared to the S-/Te-doped and undoped manganate nanostructures. This is attributed to the presence of chemically stable SeO 42- species, leading to enhanced stability of the manganate lattice through the prevention of structural deformation during cycling and/or to the improvement of Li+ ion transport through the maintenance of intercrystallite voids. Based on the present experimental findings, we are able to conclude that the present one-pot soft-chemical route with chalcogen dopants can provide a simple method not only to economically synthesize ID nanostructured manganese oxides but also to finely control their electrode performance, crystal structure and morphology, and lattice stability. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.
DOI
10.1002/smll.200700902
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE