View : 893 Download: 0

Coreactant Strategy for the Photoredox Catalytic Generation of Trifluoromethyl Radicals under Low-Energy Photoirradiation

Title
Coreactant Strategy for the Photoredox Catalytic Generation of Trifluoromethyl Radicals under Low-Energy Photoirradiation
Authors
Kim, SinheuiPark, GyurimCho, Eun JinYou, Youngmin
Ewha Authors
유영민
SCOPUS Author ID
유영민scopus
Issue Date
2016
Journal Title
JOURNAL OF ORGANIC CHEMISTRY
ISSN
0022-3263JCR Link
Citation
JOURNAL OF ORGANIC CHEMISTRY vol. 81, no. 16, pp. 7072 - 7079
Publisher
AMER CHEMICAL SOC
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Photoredox catalysis has emerged as a valuable alternative to dark-state catalysis. For the full potential of photoredox catalysis to be utilized, it is imperative to make use of low-energy photons in photoinduced radical processes. We have demonstrated that the use of oxalate as a coreactant provides a useful principle for the photocatalytic production of trifluoromethyl radicals (center dot CF3) from CF3I upon green or red LED photoirradiation of narrow-bandgap photocatalysts. The photo catalytic cycle involves a radical anion of carbon dioxide (CO2 center dot-) as a reductant for CF3I, which is generated through photoinduced oxidative decarboxylation of oxalate. Electrochemical characterizations and steady-state and transient photophysical investigations were performed to reveal that there are two photoinduced electron-transfer pathways for oxalate-mediated center dot CF3 generation.
DOI
10.1021/acs.joc.6b00966
Appears in Collections:
공과대학 > 화공신소재공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE