View : 353 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author김상집-
dc.date.accessioned2016-08-28T10:08:27Z-
dc.date.available2016-08-28T10:08:27Z-
dc.date.issued2013-
dc.identifier.issn0021-8693-
dc.identifier.otherOAK-10410-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/224002-
dc.description.abstractThis paper studies the geometric and algebraic aspects of the moduli spaces of quivers of fence type. We first provide two quotient presentations of the quiver varieties and interpret their equivalence as a generalized Gelfand-MacPherson correspondence. Next, we introduce parabolic quivers and extend the above from the actions of reductive groups to the actions of parabolic subgroups. Interestingly, the above geometry finds its natural counterparts in the representation theory as the branching rules and transfer principle in the context of the reciprocity algebra. The last half of the paper establishes this connection. © 2013 Elsevier Inc.-
dc.languageEnglish-
dc.titleQuivers, invariants and quotient correspondence-
dc.typeArticle-
dc.relation.volume393-
dc.relation.indexSCI-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage197-
dc.relation.lastpage216-
dc.relation.journaltitleJournal of Algebra-
dc.identifier.doi10.1016/j.jalgebra.2013.07.012-
dc.identifier.wosidWOS:000323463200016-
dc.identifier.scopusid2-s2.0-84881554248-
dc.author.googleHu Y.-
dc.author.googleKim S.-
dc.contributor.scopusid김상집(23977865800)-
dc.date.modifydate20211210153931-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE