View : 784 Download: 0

N-doped mesoporous inverse opal structures for visible-light photocatalysts

Title
N-doped mesoporous inverse opal structures for visible-light photocatalysts
Authors
Ha, Su-JinKim, Dong HaMoon, Jun Hyuk
Ewha Authors
김동하
SCOPUS Author ID
김동하scopus
Issue Date
2015
Journal Title
RSC ADVANCES
ISSN
2046-2069JCR Link
Citation
RSC ADVANCES vol. 5, no. 95, pp. 77716 - 77722
Publisher
ROYAL SOC CHEMISTRY
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
We introduce a new type of doped TiO2 nanostructures, an N-doped mesoporous inverse opal (N-mIO) TiO2 structure as a high-performance visible-light photocatalyst. The mIO TiO2 structure with a 60 nm pore diameter, which possesses a much higher specific area compared with conventional macroporous IO structures, is prepared via a templating approach. The N doping in the mIO TiO2 is achieved via a heat-treatment in the presence of a N-rich precursor. We characterize that the N atom is incorporated in an oxygen-substitution configuration, which effectively narrowed the bandgap of TiO2. We observe that the N doping with a 9.4 wt% doping concentration narrows the bandgap from 3.2 eV to 2.4 eV, which corresponds to light absorption at wavelengths as long as 520 nm. The N doping also changes the surface polarity of TiO2 to a more negative value, which leads to greater adsorption of methylene blue (MB) organic molecules. In the photocatalytic decomposition of MB, the highly N-doped mIO TiO2 exhibits a decomposition rate under visible light exposure that is 4.9 times greater than that of bare IO TiO2. Moreover, compared with the conventional macroporous IO structure, the N-doped mIO exhibits 1.7 times greater activity as a result of its high specific area. We believe this mIO structure can provide a new platform for various electrode applications.
DOI
10.1039/c5ra13198g
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE